32 research outputs found
Alien Registration- Parent, Julie (Van Buren, Aroostook County)
https://digitalmaine.com/alien_docs/32268/thumbnail.jp
Des pistes pour améliorer les compétences en lecture des élèves
La dernière enquête pancanadienne sur les compétences en lecture des élèves du secondaire dresse un portrait peu flatteur des élèves québécois par comparaison avec leurs pairs de l’Ontario, de l’Alberta ou de la Colombie-Britannique. Profitant de la diffusion de ces résultats accablants, la ministre de l’Éducation, du Loisir et du Sport a annoncé un certain nombre de mesures visant à rectifier le tir en matière d’enseignement de la lecture, répondant ainsi en partie à des revendications portées depuis quelque temps par les instances syndicales. Les mesures annoncées concernent la révision des orientations du programme du préscolaire et du primaire pour les premiers apprentissages, l’ajout d’une épreuve
d’évaluation à la fin du deuxième cycle du primaire ainsi qu’un engagement à débloquer des fonds non
négligeables pour des recherches relatives à la question de l’acquisition de la compétence en lecture
Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: A modelling approach
In the context of partial harvesting, adequately managing post-harvest light conditions are essential to obtain a desired composition of tree species regeneration. The objective of this study was to determine how varying the intensity and spatial pattern of harvest would affect understory light conditions in boreal mixedwood stands of northwestern Quebec using the spatially explicit SORTIE-ND light model. The model was evaluated based on comparisons of observed and predicted light levels in both mapped and un-mapped plots. In mapped plots, reasonably accurate predictions of the overall variation in light levels were obtained, but predictions tended to lack spatial precision. In un-mapped plots, SORTIE-ND accurately predicted stand-level mean GLI (Gap Light Index) under a range of harvest intensities. The model was then used to simulate nine silvicultural treatments based on combinations of three intensities of overstory removal (30%, 45% and 60% of basal area) and three harvest patterns (uniform, narrow strips, large gaps). Simulations showed that increasing overstory removal had less impact on light conditions with uniform harvests, and a more marked effect with more aggregated harvest patterns. Whatever the harvest intensity, uniform cuts almost never created high light conditions (GLI > 50%). Gap cuts, on the other hand, resulted in up to 40% of microsites receiving GLI > 50%. Our results suggest that either a 30% strip or gap cut or a 45–60% uniform partial harvest could be used to accelerate the transition from an aspen dominated composition to a mixedwood stand because both types of cut generate the greatest proportion of moderately low light levels (e.g., 15–40% GLI). These light levels tend to favour an accelerated growth response among shade-tolerant conifers, while preventing excessive recruitment of shade-intolerant species. A better understanding of how spatial patterns of harvest interact with tree removal intensity to affect understory light conditions can provide opportunities for designing silvicultural prescriptions that are tailored to species’ traits and better suited to meet a variety of management objectives
Safeguarding Female Reproductive Health against Endocrine Disrupting Chemicals : The FREIA Project
Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 825100.Peer reviewedPublisher PD
The everchanging epidemiology of meningococcal disease worldwide and the potential for prevention through vaccination.
Neisseria meningitidis is a major cause of bacterial meningitis and septicaemia worldwide and is associated with high case fatality rates and serious life-long complications among survivors. Twelve serogroups are recognised, of which six (A, B, C, W, X and Y) are responsible for nearly all cases of invasive meningococcal disease (IMD). The incidence of IMD and responsible serogroups vary widely both geographically and over time. For the first time, effective vaccines against all these serogroups are available or nearing licensure. Over the past two decades, IMD incidence has been declining across most parts of the world through a combination of successful meningococcal immunisation programmes and secular trends. The introduction of meningococcal C conjugate vaccines in the early 2000s was associated with rapid declines in meningococcal C disease, whilst implementation of a meningococcal A conjugate vaccine across the African meningitis belt led to near-elimination of meningococcal A disease. Consequently, other serogroups have become more important causes of IMD. In particular, the emergence of a hypervirulent meningococcal group W clone has led many countries to shift from monovalent meningococcal C to quadrivalent ACWY conjugate vaccines in their national immunisation programmes. Additionally, the recent licensure of two protein-based, broad-spectrum meningococcal B vaccines finally provides protection against the most common group responsible for childhood IMD across Europe and Australia. This review describes global IMD epidemiology across each continent and trends over time, the serogroups responsible for IMD, the impact of meningococcal immunisation programmes and future needs to eliminate this devastating disease
Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope
We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models
Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk
The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project–imputed genotype data in up to ~370,000 women, we identify 389 independent signals (P < 5 × 10) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ~7.4% of the population variance in age at menarche, corresponding to ~25% of the estimated heritability. We implicate ~250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility
The axonal arborization of single nigrostriatal neurons in rats
Neurons of the substantia nigra pars compacta (SNc) were iontophoretically injected with biotin dextran and their anterogradely labeled axons individually reconstructed from serial sagittal sections. Most nigrostriatal axons travelled directly to the striatum, where they branched abundantly. Other axons arborized profusely in various extrastriatal structures, including the globus pallidus, the entopeduncular and subthalamic nuclei, and branched only sparsely in the striatum. This heterogeneous organization of the nigrostriatal projection allows single SNc neurons to influence differently striatal neurons and to act directly upon extrastriatal components of the basal ganglia via a highly patterned set of collaterals
Organization of the basal ganglia : the importance of axonal collateralization
Recent neuroanatomical data obtained with single-axon or single-cell labeling procedures in both
rodents and primates have revealed the presence of various types of projection neurons with
profusely collateralized axons within each of the major components of the basal ganglia. Such
findings call for a reappraisal of current concepts of the anatomical and functional organization of
the basal ganglia, which play such a crucial role in the control of motor behavior. The basal ganglia
now stand as a widely distributed neuronal network, whose elements are endowed with a highly
patterned set of axon collaterals. The elucidation of this finely tuned network is needed to
understand the complex spatiotemporal sequence of neural events that ensures the flow of cortical
information through the basal ganglia
Ultrastructural evidence of microglial heterogeneity in Alzheimer’s disease amyloid pathology
Abstract Background Alzheimer’s disease (AD) is the most common neurodegenerative disease, characterized by the deposition of extracellular fibrillar amyloid β (fΑβ) and the intracellular accumulation of neurofibrillary tangles. As AD progresses, Aβ drives a robust and prolonged inflammatory response via its recognition by microglia, the brain’s immune cells. Microglial reactivity to fAβ plaques may impair their normal surveillance duties, facilitating synaptic loss and neuronal death, as well as cognitive decline in AD. Methods In the current study, we performed correlative light, transmission, and scanning electron microscopy to provide insights into microglial structural and functional heterogeneity. We analyzed microglial cell bodies and processes in areas containing fAβ plaques and neuronal dystrophy, dystrophy only, or appearing healthy, among the hippocampus CA1 of 14-month-old APPSwe-PS1Δe9 mice versus wild-type littermates. Results Our quantitative analysis revealed that microglial cell bodies in the AD model mice were larger and displayed ultrastructural signs of cellular stress, especially nearby plaques. Microglial cell bodies and processes were overall less phagocytic in AD model mice. However, they contained increased fibrillar materials and non-empty inclusions proximal to plaques. Microglial cell bodies and processes in AD model mice also displayed reduced association with extracellular space pockets that contained debris. In addition, microglial processes in healthy subregions of AD model mice encircled synaptic elements more often compared with plaque-associated processes. These observations in mice were qualitatively replicated in post-mortem hippocampal samples from two patients with AD (Braak stage 5). Conclusion Together, our findings identify at the ultrastructural level distinct microglial transformations common to mouse and human in association with amyloid pathology