2,380 research outputs found
Recommended from our members
Retrofitting Autonomic Capabilities onto Legacy Systems
Autonomic computing - self-configuring, self-healing, self-optimizing applications, systems and networks - is a promising solution to ever-increasing system complexity and the spiraling costs of human management as systems scale to global proportions. Most results to date, however, suggest ways to architect new software constructed from the ground up as autonomic systems, whereas in the real world organizations continue to use stovepipe legacy systems and/or build 'systems of systems' that draw from a gamut of disparate technologies from numerous vendors. Our goal is to retrofit autonomic computing onto such systems, externally, without any need to understand, modify or even recompile the target system's code. We present an autonomic infrastructure that operates similarly to active middleware, to explicitly add autonomic services to pre-existing systems via continual monitoring and a feedback loop that performs, as needed, reconfiguration and/or repair. Our lightweight design and separation of concerns enables easy adoption of individual components, independent of the rest of the full infrastructure, for use with a large variety of target systems. This work has been validated by several case studies spanning multiple application domains
Recommended from our members
An Approach to Autonomizing Legacy Systems
Adding adaptation capabilities to existing distributed systems is a major concern. The question addressed here is how to retrofit existing systems with self-healing, adaptation and/or self management capabilities. The problem is obviously intensified for 'systems of systems' composed of components, whether new or legacy, that may have been developed by different vendors, mixing and matching COTS and 'open source' components. This system composition model is expected to be increasingly common in high performance computing. The usual approach is to train technicians to understand the complexities of these components and their connections, including performance tuning parameters, so that they can then manually monitor and reconfigure the system as needed. We envision instead attaching a 'standard' feedback loop infrastructure to existing distributed systems for the purposes of continual monitoring and dynamically adapting their activities and performance. (This approach can also be applied to 'new' systems, as an alternative to 'building in' adaptation facilities, but we do not address that here.) Our proposed infrastructure consists of multiple layers with the objectives of probing, measuring and reporting of activity and state within the execution of the legacy system among its components and connectors; gauging, analysis and interpretation of the reported events; and possible feedback to focus the probes and gauges to drill deeper, or when necessary - direct but automatic reconfiguration of the running system
Recommended from our members
Kinesthetics eXtreme: An External Infrastructure for Monitoring Distributed Legacy Systems
Autonomic computing - self-configuring, self-healing, self-optimizing applications, systems and networks - is widely believed to be a promising solution to ever-increasing system complexity and the spiraling costs of human system management as systems scale to global proportions. Most results to date, however, suggest ways to architect new software constructed from the ground up as autonomic systems, whereas in the real world organizations continue to use stovepipe legacy systems and/or build 'systems of systems' that draw from a gamut of new and legacy components involving disparate technologies from numerous vendors. Our goal is to retrofit autonomic computing onto such systems, externally, without any need to understand or modify the code, and in many cases even when it is impossible to recompile. We present a meta-architecture implemented as active middleware infrastructure to explicitly add autonomic services via an attached feedback loop that provides continual monitoring and, as needed, reconfiguration and/or repair. Our lightweight design and separation of concerns enables easy adoption of individual components, as well as the full infrastructure, for use with a large variety of legacy, new systems, and systems of systems. We summarize several experiments spanning multiple domains
Recommended from our members
An Active Events Model for Systems Monitoring
We present an interaction model enabling data-source probes and action-based gauges to communicate using an intelligent event model known as ActEvents. ActEvents build on conventional event concepts by associating structural and semantic information with raw data, thereby allowing recipients to be able to dynamically understand the content of new kinds of events. Two submodels of ActEvents are proposed: SmartEvents, which are XML-structured events containing references to their syntactic and semantic models, and Gaugents, which are heavier but more flexible intelligent mobile software agents. This model is presented in light of DARPA's DASADA program, where ActEvents are used in a larger-scale subsystem, called KX, which supports continual validation of distributed, component-based systems. ActEvents are emitted by probes in this architecture, and propagated to gauges, where 'measurements' of the raw data associated with probes are made, thereby continually determining updated target-system properties. ActEvents are also proposed as solutions for a number of other applications, including a distributed collaborative virtual environment (CVE) known as CHIME
Covering problems in edge- and node-weighted graphs
This paper discusses the graph covering problem in which a set of edges in an
edge- and node-weighted graph is chosen to satisfy some covering constraints
while minimizing the sum of the weights. In this problem, because of the large
integrality gap of a natural linear programming (LP) relaxation, LP rounding
algorithms based on the relaxation yield poor performance. Here we propose a
stronger LP relaxation for the graph covering problem. The proposed relaxation
is applied to designing primal-dual algorithms for two fundamental graph
covering problems: the prize-collecting edge dominating set problem and the
multicut problem in trees. Our algorithms are an exact polynomial-time
algorithm for the former problem, and a 2-approximation algorithm for the
latter problem, respectively. These results match the currently known best
results for purely edge-weighted graphs.Comment: To appear in SWAT 201
Smart Cities: Towards a New Citizenship Regime? A Discourse Analysis of the British Smart City Standard
Growing practice interest in smart cities has led to calls for a less technology-oriented and more citizen-centric approach. In response, this articles investigates the citizenship mode promulgated by the smart city standard of the British Standards Institution. The analysis uses the concept of citizenship regime and a mixture of quantitative and qualitative methods to discern key discursive frames defining the smart city and the particular citizenship dimensions brought into play. The results confirm an explicit citizenship rationale guiding the smart city (standard), although this displays some substantive shortcomings and contradictions. The article concludes with recommendations for both further theory and practice development
Parameter estimation in spatially extended systems: The Karhunen-Loeve and Galerkin multiple shooting approach
Parameter estimation for spatiotemporal dynamics for coupled map lattices and
continuous time domain systems is shown using a combination of multiple
shooting, Karhunen-Loeve decomposition and Galerkin's projection methodologies.
The resulting advantages in estimating parameters have been studied and
discussed for chaotic and turbulent dynamics using small amounts of data from
subsystems, availability of only scalar and noisy time series data, effects of
space-time parameter variations, and in the presence of multiple time-scales.Comment: 11 pages, 5 figures, 4 Tables Corresponding Author - V. Ravi Kumar,
e-mail address: [email protected]
Religion and religious education : comparing and contrasting pupils’ and teachers’ views in an English school
This publication builds on and develops the English findings of the qualitative study of European teenagers’ perspectives on religion and religious education (Knauth et al. 2008), part of ‘Religion in Education: A contribution to dialogue or a factor of conflict in transforming societies of European countries?’ (REDCo) project. It uses data gathered from 27 pupils, aged 15-16, from a school in a multicultural Northern town in England and compares those findings with data gathered from ten teachers in the humanities faculty of the same school, collected during research for the Warwick REDCo Community of Practice. Comparisons are drawn between the teachers’ and their pupils’ attitudes and values using the same structure as the European study: personal views and experiences of religion, the social dimension of religion, and religious education in school. The discussion offers an analysis of the similarities and differences in worldviews and beliefs which emerged. These include religious commitment/observance differences between the mainly Muslim-heritage pupils and their mainly non-practising Christian-heritage teachers. The research should inform the ways in which the statutory duties to promote community cohesion and equalities can be implemented in schools. It should also facilitate intercultural and interreligious understanding between teachers and the pupils from different ethnic and religious backgrounds
A Holistic Approach to Service Survivability
We present SABER (Survivability Architecture: Block, Evade, React), a proposed survivability architecture that blocks, evades and reacts to a variety of attacks by using several security and survivability mechanisms in an automated and coordinated fashion. Contrary to the ad hoc manner in which contemporary survivable systems are built--using isolated, independent security mechanisms such as firewalls, intrusion detection systems and software sandboxes--SABER integrates several different technologies in an attempt to provide a unified framework for responding to the wide range of attacks malicious insiders and outsiders can launch. This coordinated multi-layer approach will be capable of defending against attacks targeted at various levels of the network stack, such as congestion-based DoS attacks, software-based DoS or code-injection attacks, and others. Our fundamental insight is that while multiple lines of defense are useful, most conventional, uncoordinated approaches fail to exploit the full range of available responses to incidents. By coordinating the response, the ability to survive even in the face of successful security breaches increases substantially. We discuss the key components of SABER, how they will be integrated together, and how we can leverage on the promising results of the individual components to improve survivability in a variety of coordinated attack scenarios. SABER is currently in the prototyping stages, with several interesting open research topics
A quasi-diagonal approach to the estimation of Lyapunov spectra for spatio-temporal systems from multivariate time series
We describe methods of estimating the entire Lyapunov spectrum of a spatially
extended system from multivariate time-series observations. Provided that the
coupling in the system is short range, the Jacobian has a banded structure and
can be estimated using spatially localised reconstructions in low embedding
dimensions. This circumvents the ``curse of dimensionality'' that prevents the
accurate reconstruction of high-dimensional dynamics from observed time series.
The technique is illustrated using coupled map lattices as prototype models for
spatio-temporal chaos and is found to work even when the coupling is not
strictly local but only exponentially decaying.Comment: 13 pages, LaTeX (RevTeX), 13 Postscript figs, to be submitted to
Phys.Rev.
- …
