169 research outputs found

    GSK3β inhibition blocks melanoma cell/host interactions by downregulating N-cadherin expression and decreasing FAK phosphorylation.

    Get PDF
    This study addresses the role of glycogen synthase kinase (GSK)-3β signaling in the tumorigenic behavior of melanoma. Immunohistochemical staining revealed GSK3β to be focally expressed in the invasive portions of 12 and 33% of primary and metastatic melanomas, respectively. GSK3 inhibitors and small interfering RNA (siRNA) knockdown of GSK3β were found to inhibit the motile behavior of melanoma cells in scratch wound, three-dimensional collagen-implanted spheroid, and modified Boyden chamber assays. Functionally, inhibition of GSK3β signaling was found to suppress N-cadherin expression at the messenger RNA and protein levels, and was associated with decreased expression of the transcription factor Slug. Pharmacological and genetic ablation of GSK3β signaling inhibited the adhesion of melanoma cells to both endothelial cells and fibroblasts and prevented transendothelial migration, an effect rescued by the forced overexpression of N-cadherin. A further role for GSK3β signaling in invasion was suggested by the ability of GSK3β inhibitors and siRNA knockdown to block phosphorylation of focal adhesion kinase (FAK) and increase the size of focal adhesions. In summary, we have, to our knowledge, demonstrated a previously unreported role for GSK3β in modulating the motile and invasive behavior of melanoma cells through N-cadherin and FAK. These studies suggest the potential therapeutic utility of inhibiting GSK3β in defined subsets of melanoma

    Adaptive resistance to RAF inhibitors in melanoma.

    Get PDF
    The discovery of activating mutations in BRAF at high frequency in cutaneous melanoma opened the door to new treatment options, which have resulted in significantly better patient outcomes. Treatments such as the FDA-approved RAF inhibitor vemurafenib and the more recently approved dabrafenib and trametinib combination therapy are designed to target the ERK1/2 pathway. Initial success in targeting this pathway is evidenced by the high percentage of melanoma patients who undergo tumor remission. However, the beneficial effects of these targeted therapies are usually short-lived due to the development of resistance, which leads to disease progression. As a result, studies have focused on the acquired forms of resistance that develop following continued exposure to therapy. Conversely, far fewer studies have investigated the adaptive forms of resistance, which activate rapidly, promote cell survival, and may underlie the development of acquired resistance by providing melanoma cells the time to develop additional mutations. We provide a detailed review of the known mechanisms of adaptive resistance in melanoma and relate them to similar responses to targeted therapies in other tumor types

    Prevalence and risk factors for mesh erosion after laparoscopic-assisted sacrocolpopexy

    Get PDF
    The purpose of this study is to identify risk factors for mesh erosion in women undergoing minimally invasive sacrocolpopexy (MISC). We hypothesize that erosion is higher in subjects undergoing concomitant hysterectomy. This is a retrospective cohort study of women who underwent MISC between November 2004 and January 2009. Demographics, operative techniques, and outcomes were abstracted from medical records. Multivariable regression identified odds of erosion. Of 188 MISC procedures 19(10%) had erosions. Erosion was higher in those with total vaginal hysterectomy (TVH) compared to both post-hysterectomy (23% vs. 5%, p = 0.003) and supracervical hysterectomy (SCH) (23% vs. 5%, p = 0.109) groups. In multivariable regression, the odds of erosion for TVH was 5.67 (95% CI: 1.88–17.10) compared to post-hysterectomy. Smoking, the use of collagen-coated mesh, transvaginal dissection, and mesh attachment transvaginally were no longer significant in the multivariable regression model. Based on this study, surgeons should consider supracervical hysterectomy over total vaginal hysterectomy as the procedure of choice in association with MISC unless removal of the cervix is otherwise indicated

    Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors.

    Get PDF
    For decades, the early development of the Xenopus embryo has been an essential model system to study the gene regulatory mechanisms that govern cellular specification. At the top of the hierarchy of gene regulatory networks, maternally deposited transcription factors initiate this process and regulate the expression of zygotic genes that give rise to three distinctive germ layer cell types (ectoderm, mesoderm, and endoderm), and subsequent generation of organ precursors. The onset of germ layer specification is also closely coupled with changes associated with chromatin modifications. This review will examine the timing of maternal transcription factors initiating the zygotic genome activation, the epigenetic landscape of embryonic chromatin, and the network structure that governs the process

    Resistance to HSP90 inhibition involving loss of MCL1 addiction

    Get PDF
    YesInhibition of the chaperone heat-shock protein 90 (HSP90) induces apoptosis, and it is a promising anti-cancer strategy. The mechanisms underpinning apoptosis activation following HSP90 inhibition and how they are modified during acquired drug resistance are unknown. We show for the first time that, to induce apoptosis, HSP90 inhibition requires the cooperation of multi BH3-only proteins (BID, BIK, PUMA) and the reciprocal suppression of the pro-survival BCL-2 family member MCL1, which occurs via inhibition of STAT5A. A subset of tumour cell lines exhibit dependence on MCL1 expression for survival and this dependence is also associated with tumour response to HSP90 inhibition. In the acquired resistance setting, MCL1 suppression in response to HSP90 inhibitors is maintained; however, a switch in MCL1 dependence occurs. This can be exploited by the BH3 peptidomimetic ABT737, through non-BCL-2-dependent synthetic lethality

    Therapy for metastatic melanoma: the past, present, and future

    Get PDF
    Metastatic melanoma is the most aggressive form of skin cancer with a median overall survival of less than one year. Advancements in our understanding of how melanoma evades the immune system as well as the recognition that melanoma is a molecularly heterogeneous disease have led to major improvements in the treatment of patients with metastatic melanoma. In 2011, the US Food and Drug Administration (FDA) approved two novel therapies for advanced melanoma: a BRAF inhibitor, vemurafenib, and an immune stimulatory agent, ipilimumab. The success of these agents has injected excitement and hope into patients and clinicians and, while these therapies have their limitations, they will likely provide excellent building blocks for the next generation of therapies. In this review we will discuss the advantages and limitations of the two new approved agents, current clinical trials designed to overcome these limitations, and future clinical trials that we feel hold the most promise
    • …
    corecore