110 research outputs found
The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription
Small RNAs play a crucial role in genome defense against transposable elements and guide Argonaute proteins to nascent RNA transcripts to induce co-transcriptional gene silencing. However, the molecular basis of this process remains unknown. Here, we identify the conserved RNA helicase Aquarius/EMB-4 as a direct and essential link between small RNA pathways and the transcriptional machinery in . Aquarius physically interacts with the germline Argonaute HRDE-1. Aquarius is required to initiate small-RNA-induced heritable gene silencing. HRDE-1 and Aquarius silence overlapping sets of genes and transposable elements. Surprisingly, removal of introns from a target gene abolishes the requirement for Aquarius, but not HRDE-1, for small RNA-dependent gene silencing. We conclude that Aquarius allows small RNA pathways to compete for access to nascent transcripts undergoing co-transcriptional splicing in order to detect and silence transposable elements. Thus, Aquarius and HRDE-1 act as gatekeepers coordinating gene expression and genome defense.A.C.B. was supported by an HFSP grant to E.A.M. (RPG0014/2015). This work was supported by Cancer Research UK (C13474/A18583, C6946/A14492), the Wellcome Trust (104640/Z/14/Z, 092096/Z/10/Z), and The European Research Council (ERC, grant 260688). The work of P.M. and X.Z. is supported by NIH grant R01GM113242 and NIH grant R01GM122080. R.M. was a Commonwealth Scholar, funded by the UK Government. J.M.C., A.N., and C.J.W. were supported by the CIHR (MOP-274660) and the Canada Research Chairs Program. A.I.L. was supported by a Wellcome Trust Programme Grant (108058/Z/15/Z) and M.L was supported by 2013/RSE/SCOTGOV/ MARIECURIE
Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate
The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)—has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788–789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492–493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate
NCAM180 Regulates Ric8A Membrane Localization and Potentiates β-Adrenergic Response
Cooperation between receptors allows integrated intracellular signaling leading to appropriate physiological responses. The Neural Cell Adhesion Molecule (NCAM) has three main isoforms of 120, 140 and 180 kDa, with adhesive and signaling properties, but their respective functions remains to be fully identified. Here we show that the human NCAM180 intracellular domain is a novel interactor of the human guanosine exchange factor (GEF) Ric8A using the yeast two hybrid system and immunoprecipitation. Furthermore, NCAM, Ric8A and Gαs form a tripartite complex. Colocalization experiments by confocal microscopy revealed that human NCAM180 specifically induces the recruitment of Ric8A to the membrane. In addition, using an in vitro recombinant system, and in vivo by comparing NCAM knock-out mouse brain to NCAM heterozygous and wild type brains, we show that NCAM expression dose dependently regulates Ric8A redistribution in detergent resistent membrane microdomains (DRM). Previous studies have demonstrated essential roles for Ric8 in Gα protein activity at G protein coupled receptors (GPCR), during neurotransmitter release and for asymmetric cell division. We observed that inhibition of Ric8A by siRNA or its overexpression, decreases or increases respectively, cAMP production following β-adrenergic receptor stimulation. Furthermore, in human HEK293T recombinant cells, NCAM180 potentiates the Gαs coupled β-adrenergic receptor response, in a Ric8A dependent manner, whereas NCAM120 or NCAM140 do not. Finally, in mouse hippocampal neurons expressing endogenously NCAM, NCAM is required for the agonist isoproterenol to induce cAMP production, and this requirement depends on Ric8A. These data illustrate a functional crosstalk between a GPCR and an IgCAM in the nervous system
Human oral viruses are personal, persistent and gender-consistent.
Viruses are the most abundant members of the human oral microbiome, yet relatively little is known about their biodiversity in humans. To improve our understanding of the DNA viruses that inhabit the human oral cavity, we examined saliva from a cohort of eight unrelated subjects over a 60-day period. Each subject was examined at 11 time points to characterize longitudinal differences in human oral viruses. Our primary goals were to determine whether oral viruses were specific to individuals and whether viral genotypes persisted over time. We found a subset of homologous viral genotypes across all subjects and time points studied, suggesting that certain genotypes may be ubiquitous among healthy human subjects. We also found significant associations between viral genotypes and individual subjects, indicating that viruses are a highly personalized feature of the healthy human oral microbiome. Many of these oral viruses were not transient members of the oral ecosystem, as demonstrated by the persistence of certain viruses throughout the entire 60-day study period. As has previously been demonstrated for bacteria and fungi, membership in the oral viral community was significantly associated with the sex of each subject. Similar characteristics of personalized, sex-specific microflora could not be identified for oral bacterial communities based on 16S rRNA. Our findings that many viruses are stable and individual-specific members of the oral ecosystem suggest that viruses have an important role in the human oral ecosystem
An Investigation of a Role for U2 snRNP Spliceosomal Components in Regulating Transcription
There is mounting evidence to suggest that the synthesis of pre-mRNA transcripts and their subsequent splicing are coordinated events. Previous studies have implicated the mammalian spliceosomal U2 snRNP as having a novel role in stimulating transcriptional elongation in vitro through interactions with the elongation factors P-TEFb and Tat-SF1; however, the mechanism remains unknown [1]. These factors are conserved in Saccharomyces cerevisiae, a fact that suggests that a similar interaction may occur in yeast to stimulate transcriptional elongation in vivo. To address this possibility we have looked for evidence of a role for the yeast Tat-SF1 homolog, Cus2, and the U2 snRNA in regulating transcription. Specifically, we have performed a genetic analysis to look for functional interactions between Cus2 or U2 snRNA and the P-TEFb yeast homologs, the Bur1/2 and Ctk1/2/3 complexes. In addition, we have analyzed Cus2-deleted or -overexpressing cells and U2 snRNA mutant cells to determine if they show transcription-related phenotypes similar to those displayed by the P-TEFb homolog mutants. In no case have we been able to observe phenotypes consistent with a role for either spliceosomal factor in transcription elongation. Furthermore, we did not find evidence for physical interactions between the yeast U2 snRNP factors and the P-TEFb homologs. These results suggest that in vivo, S. cerevisiae do not exhibit functional or physical interactions similar to those exhibited by their mammalian counterparts in vitro. The significance of the difference between our in vivo findings and the previously published in vitro results remains unclear; however, we discuss the potential importance of other factors, including viral proteins, in mediating the mammalian interactions
Analyzing factors that influence the folk use and phytonomy of 18 medicinal plants in Navarra
BACKGROUND: This article analyzes whether the distribution or area of use of 18 medicinal plants is influenced by ecological and cultural factors which might account for their traditional use and/or phytonymy in Navarra. This discussion may be helpful for comparative studies, touching as it does on other ethnopharmacological issues: a) which cultural and ecological factors affect the selection of medicinal plants; b) substitutions of medicinal plants in popular medicine; c) the relation between local nomenclature and uses. To analyze these questions, this paper presents an example of a species used for digestive disorders (tea and camomile: Jasonia glutinosa, J. tuberosa, Sideritis hyssopifolia, Bidens aurea, Chamaemelum nobile, Santolina chamaecyparissus...), high blood pressure (Rhamnus alaternus, Olea europaea...) or skin diseases (Hylotelephium maximum, H. telephium, Anagallis arvensis, A. foemina). METHODS: Fieldwork began on January 2004 and continued until December 2006. During that time we interviewed 505 informants in 218 locations in Navarra. Information was collected using semi-structured ethnobotanical interviews, and we subsequently made maps using Arc-View 8.0 program to determine the area of use of each taxon. Each map was then compared with the bioclimatic and linguistic map of Navarra, using the soil and ethnographic data for the region, and with other ethnobotanical and ethnopharmacological studies carried out in Europe. RESULTS: The results clearly show that ecological and cultural factors influence the selection of medicinal plants in this region. Climate and substrate are the most important ecological factors that influence the distribution and abundance of plants, which are the biological factors that affect medicinal plant selection. CONCLUSION: The study of edaphological and climatological factors, on the one hand, and culture, on the other, can help us to understand why a plant is replaced by another one for the same purposes, either in the same or in a different area. In many cases, the cultural factor means that the use of a species is more widespread than its ecological distribution. This may also explain the presence of synonyms and polysemies which are useful for discussing ethnopharmacological data
Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial
Aims The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
Lessons from non-canonical splicing
Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies
Amazon tree dominance across forest strata
The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 ‘hyperdominant’ species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations
Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives
In the past two decades, increased production and usage of metallic nanoparticles (NPs) has inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and has become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms are poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants has also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment
- …