3,782 research outputs found
Observation of B_s Production at the Y(5S) Resonance
Using the CLEO detector at the Cornell Electron Storage Ring, we have observed the B_s meson in e^+e^- annihilation at the Υ(5S) resonance. We find 14 candidates consistent with B_s decays into final states with a J/ψ or a D_s^((*)-). The probability that we have observed a background fluctuation is less than 8×10^(-10). We have established that at the energy of the Υ(5S) resonance B_s production proceeds predominantly through the creation of B_s^*B̅ _s^* pairs. We find σ(e^+e^-→B^s^*B̅ ^*)=[0.11_(-0.03)^(+0.04)(stat)±0.02(syst)]  nb, and set the following limits: σ(e^+e^-→B_sB̅ _s)/σ(e^+e^-→B_s^*B̅ _s^*)<0.16 and [σ(e^+e^-→B_sB̅ _s^*)+σ(e^+e^-→B_s*B̅ _s)]/σ(e^+e^-→B_s*B̅ _s^*)<0.16 (90% C.L.). The mass of the B_s^* meson is measured to be M_(B_s^*=[5.414±0.001(stat)±0.003(syst)]  GeV/c^2
Two-photon width of the charmonium state X_(c2)
The two-photon width of X_(c2)^3P_2 state of charmonium has been measured using 14.4 fb^(-1) of e^+e^-data taken at √s
=9.46–11.30 GeV with the CLEO III detector. The yy-fusion reaction studied is e^+e^- → e^+e^-yy, → yy X_(c2) → yJ/Ψ → ye^+e^-(µ^+µ^-). We measure Г_(yy) (X_(c2))B(X_(c2)) → y
J/Ψ)B(J/Ψ → e^+e^- + µ^+µ^-)= 13.2 ± 1.4(stat)± 1.1(syst) eV, and obtain Г yy(Xc2)= 559 ± 57(stat) ± 48(syst) ± 36(br) eV. This result is in excellent agreement with the result of -fusion measurement by Belle and is consistent with that of the pp → X_(c2) → yy measurement, when they are both reevaluated using the recent CLEO result for the radiative decay X_(c2) → J/Ψ
Emission of Massive Scalar Fields by a Higher-Dimensional Rotating Black-Hole
We perform a comprehensive study of the emission of massive scalar fields by
a higher-dimensional, simply rotating black hole both in the bulk and on the
brane. We derive approximate, analytic results as well as exact numerical ones
for the absorption probability, and demonstrate that the two sets agree very
well in the low and intermediate-energy regime for scalar fields with mass
m_\Phi < 1 TeV in the bulk and m_\Phi < 0.5 TeV on the brane. The numerical
values of the absorption probability are then used to derive the Hawking
radiation power emission spectra in terms of the number of extra dimensions,
angular-momentum of the black hole and mass of the emitted field. We compute
the total emissivities in the bulk and on the brane, and demonstrate that,
although the brane channel remains the dominant one, the bulk-over-brane energy
ratio is considerably increased (up to 33%) when the mass of the emitted field
is taken into account.Comment: 28 pages, 18 figure
Quantum Sensor Miniaturization
The classical bound on image resolution defined by the Rayleigh limit can be
beaten by exploiting the properties of quantum mechanical entanglement. If
entangled photons are used as signal states, the best possible resolution is
instead given by the Heisenberg limit, an improvement proportional to the
number of entangled photons in the signal. In this paper we present a novel
application of entanglement by showing that the resolution obtained by an
imaging system utilizing separable photons can be achieved by an imaging system
making use of entangled photons, but with the advantage of a smaller aperture,
thus resulting in a smaller and lighter system. This can be especially valuable
in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology
Letter
Electric-field noise from carbon-adatom diffusion on a Au(110) surface: first-principles calculations and experiments
The decoherence of trapped-ion quantum gates due to heating of their motional
modes is a fundamental science and engineering problem. This heating is
attributed to electric-field noise arising from the trap-electrode surfaces. In
this work, we investigate the source of this noise by focusing on the diffusion
of carbon-containing adsorbates on the surface of Au(110). We show by density
functional theory, based on detailed scanning probe microscopy, how the carbon
adatom diffusion on the gold surface changes the energy landscape, and how the
adatom dipole moment varies with the diffusive motion. A simple model for the
diffusion noise, which varies quadratically with the variation of the dipole
moment, qualitatively reproduces the measured noise spectrum, and the estimate
of the noise spectral density is in accord with measured values.Comment: 8 pages, 6 figure
Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: A prerequisite to compare metrics
We demonstrate how one should transform correctly quasi-isotropic coordinates
to Weyl-Papapetrou coordinates in order to compare the metric around a rotating
star that has been constructed numerically in the former coordinates with an
axially symmetric stationary metric that is given through an analytical form in
the latter coordinates. Since a stationary metric associated with an isolated
object that is built numerically partly refers to a non-vacuum solution
(interior of the star) the transformation of its coordinates to Weyl-Papapetrou
coordinates, which are usually used to describe vacuum axisymmetric and
stationary solutions of Einstein equations, is not straightforward in the
non-vacuum region. If this point is \textit{not} taken into consideration, one
may end up to erroneous conclusions about how well a specific analytical metric
matches the metric around the star, due to fallacious coordinate
transformations.Comment: 18 pages, 2 figure
Remote Sensing and Control of Phase Qubits
We demonstrate a remote sensing design of phase qubits by separating the
control and readout circuits from the qubit loop. This design improves
measurement reliability because the control readout chip can be fabricated
using more robust materials and can be reused to test different qubit chips.
Typical qubit measurements such as Rabi oscillations, spectroscopy, and
excited-state energy relaxation are presented.Comment: 3 pages, 4 figure
Magnetic Fluctuations and Correlations in MnSi - Evidence for a Skyrmion Spin Liquid Phase
We present a comprehensive analysis of high resolution neutron scattering
data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which
confirm the first order nature of the helical transition and reveal the
existence of a new spin liquid skyrmion phase. Similar to the blue phases of
liquid crystals this phase appears in a very narrow temperature range between
the low temperature helical and the high temperature paramagnetic phases.Comment: 11 pages, 16 figure
- …