1 research outputs found
The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species
31 p.-11 fig.-2 tab.+ Erratum (2 p.) Papanikolaou, Alexie et al.Background: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have
been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control.Results: The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A highquality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT.Conclusions: The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important
to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolutionSupport of this project was provided by the U.S. Department of Agriculture(USDA), Agricultural Research Service (ARS), Animal and Plant Health Inspection Service (APHIS), and National Institute of Food and Agriculture(NIFA)-Biotechnology Risk Assessment Grants Program (grant #2011-39211-30769 to AMH) for funding the initial phase of this project, and to the National Institutes of Health (NIH)-National Human Genome Research Institute (NHGRI) for
funding the medfly genome sequencing, assembly and Maker 2.0 automated annotation as part of the i5K 30 genome pilot project (grant #U54 HG003273 to RAG). The NIH Intramural Research Program, National Library of Medicine funded the NCBI Gnomon annotation and the USDA-National Agricultural Library (NAL)
provided support for the WebApollo curation website, with support for manual curation training (to MM-T) provided by NIGMS (grant #5R01GM080203),NHGRI (grant #5R01HG004483), and the U.S. Department of Energy(contract #DE-AC02-05CH11231). Support was provided for: toxin metabolism and insecticide resistance gene studies from MINECO,Spain (AGL2013-42632-R to FO and PH-C); microRNAs, horizontal gene transfer and bacterial contaminant studies from the European Social Fund and National Strategic Reference Framework-THALES (MIS375869 to KB, GT, AGH, and KM) and the U.S. National Science Foundation(DEB 1257053 to JHW); cuticle protein gene studies from USDA-NIFA(grant #2016-67012-24652 to AJR); sex-determination studies from L.R.
Campania (grant 5/02, 2008 to GS); male reproduction and sexual
differentiation studies from the FAO/IAEA (Technical Contract No: 16966 to GGa) and Cariplo IMPROVE (to FS); and programmed cell death gene studies and genomic data analysis (to MFS) from the Emmy Noether program, DFG(SCHE 1833/1-1) and the LOEWE Center for Insect Biotechnology & Bioresources grant of the Hessen State Ministry of Higher Education, Research and the Arts(HMWK), Germany and from the USDA-NIFA-Biotechnology Risk Assessment Grants Program (grant #2015-33522-24094 to AMH).Peer reviewe