978 research outputs found
Dynamics of topological solitons in two-dimensional ferromagnets
Dynamical topological solitons are studied in classical two-dimensional
Heisenberg easy-axis ferromagnets. The properties of such solitons are treated
both analytically in the continuum limit and numerically by spin dynamics
simulations of the discrete system. Excitation of internal mode causes orbital
motion. This is confirmed by simulations.Comment: LaTeX, 15 pages, 6 figure
Magnon dispersion and thermodynamics in CsNiF_3
We present an accurate transfer matrix renormalization group calculation of
the thermodynamics in a quantum spin-1 planar ferromagnetic chain. We also
calculate the field dependence of the magnon gap and confirm the accuracy of
the magnon dispersion derived earlier through an 1/n expansion. We are thus
able to examine the validity of a number of previous calculations and further
analyze a wide range of experiments on CsNiF_3 concerning the magnon
dispersion, magnetization, susceptibility, and specific heat. Although it is
not possible to account for all data with a single set of parameters, the
overall qualitative agreement is good and the remaining discrepancies may
reflect departure from ideal quasi-one-dimensional model behavior. Finally, we
present some indirect evidence to the effect that the popular interpretation of
the excess specific heat in terms of sine-Gordon solitons may not be
appropriate.Comment: 9 pages 10 figure
Solitary Waves of Planar Ferromagnets and the Breakdown of the Spin-Polarized Quantum Hall Effect
A branch of uniformly-propagating solitary waves of planar ferromagnets is
identified. The energy dispersion and structures of the solitary waves are
determined for an isotropic ferromagnet as functions of a conserved momentum.
With increasing momentum, their structure undergoes a transition from a form
ressembling a droplet of spin-waves to a Skyrmion/anti-Skyrmion pair. An
instability to the formation of these solitary waves is shown to provide a
mechanism for the electric field-induced breakdown of the spin-polarized
quantum Hall effect.Comment: 5 pages, 3 eps-figures, revtex with epsf.tex and multicol.st
Green function Retrieval and Time-reversal in a Disordered World
We apply the theory of multiple wave scattering to two contemporary, related
topics: imaging with diffuse correlations and stability of time-reversal of
diffuse waves, using equipartition, coherent backscattering and frequency
speckles as fundamental concepts.Comment: 1 figur
Extracellular Matrix Oxidised by the Granulocyte Oxidants Hypochlorous and Hypobromous Acid Reduces Lung Fibroblast Adhesion and Proliferation In Vitro.
Chronic airway inflammation and oxidative stress play crucial roles in the pathogenesis of chronic inflammatory lung diseases, with airway inflammation being a key driving mechanism of oxidative stress in the lungs. Inflammatory responses in the lungs activate neutrophils and/or eosinophils, leading to the generation of hypohalous acids (HOX). These HOX oxidants can damage the extracellular matrix (ECM) structure and may influence cell-ECM interactions. The ECM of the lung provides structural, mechanical, and biochemical support for cells and determines the airway structure. One of the critical cells in chronic respiratory disease is the fibroblast. Thus, we hypothesised that primary human lung fibroblasts (PHLF) exposed to an oxidised cell-derived ECM will result in functional changes to the PHLF. Here, we show that PHLF adhesion, proliferation, and inflammatory cytokine secretion is affected by exposure to HOX-induced oxidisation of the cell-derived ECM. Furthermore, we investigated the impact on fibroblast function from the presence of haloamines in the ECM. Haloamines are chemical by-products of HOX and, like the HOX, haloamines can also modify the ECM. In conclusion, this study revealed that oxidising the cell-derived ECM might contribute to functional changes in PHLF, a key mechanism behind the pathogenesis of inflammatory lung diseases
Vortex Pull by an External Current
In the context of a dynamical Ginzburg-Landau model it is shown numerically
that under the influence of a homogeneous external current J the vortex drifts
against the current with velocity in agreement to earlier analytical
predictions. In the presence of dissipation the vortex undergoes skew
deflection at an angle with respect to the
external current. It is shown analytically and verified numerically that the
angle and the speed of the vortex are linked through a simple
mathematical relation.Comment: 19 pages, LATEX, 6 Postscript figures included in separate compressed
fil
Dynamical properties of Au from tight-binding molecular-dynamics simulations
We studied the dynamical properties of Au using our previously developed
tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K
were determined by computing the dynamical-matrix using a supercell approach.
In addition, we performed molecular-dynamics simulations at various
temperatures to obtain the temperature dependence of the lattice constant and
of the atomic mean-square-displacement, as well as the phonon density-of-states
and phonon-dispersion curves at finite temperature. We further tested the
transferability of the model to different atomic environments by simulating
liquid gold. Whenever possible we compared these results to experimental
values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical
Review
Thermal and magnetic properties of spin-1 magnetic chain compounds with large single-ion and in-plane anisotropies
The thermal and magnetic properties of spin-1 magnetic chain compounds with
large single-ion and in-plane anisotropies are investigated via the integrable
su(3) model in terms of the quantum transfer matrix method and the recently
developed high temperature expansion method for exactly solved models. It is
shown that large single-ion anisotropy may result in a singlet gapped phase in
the spin-1 chain which is significantly different from the standard Haldane
phase. A large in-plane anisotropy may destroy the gapped phase. On the other
hand, in the vicinity of the critical point a weak in-plane anisotropy leads to
a different phase transition than the Pokrovsky-Talapov transition. The
magnetic susceptibility, specific heat and magnetization evaluated from the
free energy are in excellent agreement with the experimental data for the
compounds NiC_2H_8N_2)_2Ni(CN)_4 and Ni(C_{10}H_8N_2)_2Ni(CN)_4.H_2O.Comment: 18 pages, 6 figures, to appear in PR
Search for the Nondimerized Quantum Nematic Phase in the Spin-1 Chain
Chubukov's proposal concerning the possibility of a nondimerized quantum
nematic phase in the ground-state phase diagram of the bilinear-biquadratic
spin-1 chain is studied numerically. Our results do not support the existence
of this phase, but they rather indicate a direct transition from the
ferromagnetic into the dimerized phase.Comment: REVTEX, 14 pages +8 PostScript figure
Stationary structures in two-dimensional continuous Heisenberg ferromagnetic spin system
Stationary structures in a classical isotropic two-dimensional continuous
Heisenberg ferromagnetic spin system are studied in the framework of the
(2+1)-dimensional Landau-Lifshitz model. It is established that in the case of
\vec S (\vec r, t)= \vec S (\vec r - \vec v t) the Landau-Lifshitz equation is
closely related to the Ablowitz-Ladik hierarchy. This relation is used to
obtain soliton structures, which are shown to be caused by joint action of
nonlinearity and spatial dispersion, contrary to the well-known one-dimensional
solitons which exist due to competition of nonlinearity and temporal
dispersion. We also present elliptical quasiperiodic stationary solutions of
the stationary (2+1)-dimensional Landau-Lifshitz equation.Comment: Archive version is already official Published by JNMP at
http://www.sm.luth.se/math/JNMP
- …