392 research outputs found
Recommended from our members
Prototyping a Context-Aware Framework for Pervasive Entertainment Applications
Recommended from our members
Recent advances in the user evaluation methods and studies of non-photorealistic visualisation and rendering techniques
Low-energy dipole strength and the critical case of 48Ca
Recent theoretical work has not led to a consensus regarding the nature of
the low-energy E1 strength in the 40,44,48Ca isotopes, for which
high-resolution (gamma,gamma') data exist. Here we revisit this problem using
the first-order quasi-particle random-phase approximation (QRPA) and different
interactions. First we examine all even Ca isotopes with N=14-40. All isotopes
are predicted to undergo dipole transitions at low energy, of large and
comparable isoscalar strength but of varying E1 strength. Provided a moderate
and uniform energetic shift is introduced to the results, QRPA with the Gogny
D1S interaction is able to account for the (gamma,gamma') data, because, up to
N=28, it yields a rather pure isoscalar oscillation. A neutron-skin oscillation
is anticipated for N larger or equal to 30. This contradicts existing
predictions that 44,48Ca develop a neutron-skin mode. Which theoretical result
is correct cannot be resolved conclusively using the available data. We propose
that alpha-scattering, possibly followed by an electroexcitation experiment,
could resolve the situation and thereby help to improve the different models
aspiring to describe reliably the low-energy dipole strength of nuclei.Comment: 7 pages, incl. 3 figures; PLB submitte
Multicritical Points and Crossover Mediating the Strong Violation of Universality: Wang-Landau Determinations in the Random-Bond Blume-Capel model
The effects of bond randomness on the phase diagram and critical behavior of
the square lattice ferromagnetic Blume-Capel model are discussed. The system is
studied in both the pure and disordered versions by the same efficient
two-stage Wang-Landau method for many values of the crystal field, restricted
here in the second-order phase transition regime of the pure model. For the
random-bond version several disorder strengths are considered. We present phase
diagram points of both pure and random versions and for a particular disorder
strength we locate the emergence of the enhancement of ferromagnetic order
observed in an earlier study in the ex-first-order regime. The critical
properties of the pure model are contrasted and compared to those of the random
model. Accepting, for the weak random version, the assumption of the double
logarithmic scenario for the specific heat we attempt to estimate the range of
universality between the pure and random-bond models. The behavior of the
strong disorder regime is also discussed and a rather complex and yet not fully
understood behavior is observed. It is pointed out that this complexity is
related to the ground-state structure of the random-bond version.Comment: 12 pages, 11 figures, submitted for publicatio
A microscopic investigation of the transition form factor in the region of collective multipole excitations of stable and unstable nuclei
We have used a self-consistent Skyrme-Hartree-Fock plus Continuum-RPA model
to study the low-multipole response of stable and neutron/proton-rich Ni and Sn
isotopes. We focus on the momentum-transfer dependence of the strength
distribution, as it provides information on the structure of excited nuclear
states and in particular on the variations of the transition form factor (TFF)
with the energy. Our results show, among other things, that the TFF may show
significant energy dependence in the region of the isoscalar giant monopole
resonance and that the TFF corresponding to the threshold strength in the case
of neutron-rich nuclei is different compared to the one corresponding to the
respective giant resonance. Perspectives are given for more detailed future
investigations.Comment: 13 pages, incl. 9 figures; to appear in J.Phys.G,
http://www.iop.org/EJ/jphys
Isoscalar dipole coherence at low energies and forbidden E1 strength
In 16O and 40Ca an isoscalar, low-energy dipole transition (IS-LED)
exhausting approximately 4% of the isoscalar dipole (ISD) energy-weighted sum
rule is experimentally known, but conspicuously absent from recent theoretical
investigations of ISD strength. The IS-LED mode coincides with the so-called
isospin-forbidden E1 transition. We report that for N=Z nuclei up to 100Sn the
fully self-consistent Random-Phase-Approximation with finite-range forces,
phenomenological and realistic, yields a collective IS-LED mode, typically
overestimating its excitation energy, but correctly describing its IS strength
and electroexcitation form factor. The presence of E1 strength is solely due to
the Coulomb interaction between the protons and the resulting isospin-symmetry
breaking. The smallness of its value is related to the form of the transition
density, due to translational invariance. The calculated values of E1 and ISD
strength carried by the IS-LED depend on the effective interaction used.
Attention is drawn to the possibility that in N-not-equal-Z nuclei this
distinct mode of IS surface vibration can develop as such or mix strongly with
skin modes and thus influence the pygmy dipole strength as well as the ISD
strength function. In general, theoretical models currently in use may be unfit
to predict its precise position and strength, if at all its existence.Comment: 9 pages, 6 figures, EPJA submitte
Isospin properties of electric dipole excitations in 48Ca
Two different experimental approaches were combined to study the electric
dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold.
Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and
nearly mono-energetic linearly polarized photons with energies between 6.6 and
9.51 MeV provided strength distribution and parities, and an
(\alpha,\alpha'\gamma) experiment at E_{\alpha}=136 MeV gave cross sections for
an isoscalar probe. The unexpected difference observed in the dipole response
is compared to calculations using the first-order random-phase approximation
and points to an energy-dependent isospin character. A strong isoscalar state
at 7.6 MeV was identified for the first time supporting a recent theoretical
prediction.Comment: 6 pages, 5 figures, as accepted in Phys. Lett.
Making GDPR Usable: A Model to Support Usability Evaluations of Privacy
We introduce a new model for evaluating privacy that builds on the criteria
proposed by the EuroPriSe certification scheme by adding usability criteria.
Our model is visually represented through a cube, called Usable Privacy Cube
(or UP Cube), where each of its three axes of variability captures,
respectively: rights of the data subjects, privacy principles, and usable
privacy criteria. We slightly reorganize the criteria of EuroPriSe to fit with
the UP Cube model, i.e., we show how EuroPriSe can be viewed as a combination
of only rights and principles, forming the two axes at the basis of our UP
Cube. In this way we also want to bring out two perspectives on privacy: that
of the data subjects and, respectively, that of the controllers/processors. We
define usable privacy criteria based on usability goals that we have extracted
from the whole text of the General Data Protection Regulation. The criteria are
designed to produce measurements of the level of usability with which the goals
are reached. Precisely, we measure effectiveness, efficiency, and satisfaction,
considering both the objective and the perceived usability outcomes, producing
measures of accuracy and completeness, of resource utilization (e.g., time,
effort, financial), and measures resulting from satisfaction scales. In the
long run, the UP Cube is meant to be the model behind a new certification
methodology capable of evaluating the usability of privacy, to the benefit of
common users. For industries, considering also the usability of privacy would
allow for greater business differentiation, beyond GDPR compliance.Comment: 41 pages, 2 figures, 1 table, and appendixe
Universality of the Ising and the S=1 model on Archimedean lattices: A Monte Carlo determination
The Ising model S=1/2 and the S=1 model are studied by efficient Monte Carlo
schemes on the (3,4,6,4) and the (3,3,3,3,6) Archimedean lattices. The
algorithms used, a hybrid Metropolis-Wolff algorithm and a parallel tempering
protocol, are briefly described and compared with the simple Metropolis
algorithm. Accurate Monte Carlo data are produced at the exact critical
temperatures of the Ising model for these lattices. Their finite-size analysis
provide, with high accuracy, all critical exponents which, as expected, are the
same with the well known 2d Ising model exact values. A detailed finite-size
scaling analysis of our Monte Carlo data for the S=1 model on the same lattices
provides very clear evidence that this model obeys, also very well, the 2d
Ising model critical exponents. As a result, we find that recent Monte Carlo
simulations and attempts to define effective dimensionality for the S=1 model
on these lattices are misleading. Accurate estimates are obtained for the
critical amplitudes of the logarithmic expansions of the specific heat for both
models on the two Archimedean lattices.Comment: 9 pages, 11 figure
Phase diagram of neutron-rich nuclear matter and its impact on astrophysics
Dense matter as it can be found in core-collapse supernovae and neutron stars
is expected to exhibit different phase transitions which impact the matter
composition and equation of state, with important consequences on the dynamics
of core-collapse supernova explosion and on the structure of neutron stars. In
this paper we will address the specific phenomenology of two of such
transitions, namely the crust-core solid-liquid transition at sub-saturation
density, and the possible strange transition at super-saturation density in the
presence of hyperonic degrees of freedom. Concerning the neutron star
crust-core phase transition at zero and finite temperature, it will be shown
that, as a consequence of the presence of long-range Coulomb interactions, the
equivalence of statistical ensembles is violated and a clusterized phase is
expected which is not accessible in the grand-canonical ensemble. A specific
quasi-particle model will be introduced to illustrate this anomalous
thermodynamics and some quantitative results relevant for the supernova
dynamics will be shown. The opening of hyperonic degrees of freedom at higher
densities corresponding to the neutron stars core modifies the equation of
state. The general characteristics and order of phase transitions in this
regime will be analyzed in the framework of a self-consistent mean-field
approach.Comment: Invited Talk given at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
- …