8 research outputs found
On Quadrirational Yang-Baxter Maps
We use the classification of the quadrirational maps given by Adler, Bobenko
and Suris to describe when such maps satisfy the Yang-Baxter relation. We show
that the corresponding maps can be characterized by certain singularity
invariance condition. This leads to some new families of Yang-Baxter maps
corresponding to the geometric symmetries of pencils of quadrics.Comment: Proceedings of the workshop "Geometric Aspects of Discrete and
Ultra-Discrete Integrable Systems" (Glasgow, March-April 2009
Yang Baxter maps with first degree polynomial 2 by 2 Lax matrices
A family of nonparametric Yang Baxter (YB) maps is constructed by
refactorization of the product of two 2 by 2 matrix polynomials of first
degree. These maps are Poisson with respect to the Sklyanin bracket. For each
Casimir function a parametric Poisson YB map is generated by reduction on the
corresponding level set. By considering a complete set of Casimir functions
symplectic multiparametric YB maps are derived. These maps are quadrirational
with explicit formulae in terms of matrix operations. Their Lax matrices are,
by construction, 2 by 2 first degree polynomial in the spectral parameter and
are classified by Jordan normal form of the leading term. Nonquadrirational
parametric YB maps constructed as limits of the quadrirational ones are
connected to known integrable systems on quad graphs
Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method
The application of the Gardner method for generation of conservation laws to
all the ABS equations is considered. It is shown that all the necessary
information for the application of the Gardner method, namely B\"acklund
transformations and initial conservation laws, follow from the multidimensional
consistency of ABS equations. We also apply the Gardner method to an asymmetric
equation which is not included in the ABS classification. An analog of the
Gardner method for generation of symmetries is developed and applied to
discrete KdV. It can also be applied to all the other ABS equations
Yang-Baxter maps and multi-field integrable lattice equations
A variety of Yang-Baxter maps are obtained from integrable multi-field
equations on quad-graphs. A systematic framework for investigating this
connection relies on the symmetry groups of the equations. The method is
applied to lattice equations introduced by Adler and Yamilov and which are
related to the nonlinear superposition formulae for the B\"acklund
transformations of the nonlinear Schr\"odinger system and specific
ferromagnetic models.Comment: 16 pages, 4 figures, corrected versio
Symmetries and integrability of discrete equations defined on a black–white lattice
We study the deformations of the H equations, presented recently by Adler, Bobenko and Suris, which are naturally defined on a black–white lattice. For each one of these equations, two different three-leg forms are constructed, leading to two different discrete Toda-type equations. Their multidimensional consistency leads to Bäcklund transformations relating different members of this class as well as to Lax pairs. Their symmetry analysis is presented yielding infinite hierarchies of generalized symmetries
Affine linear and D4 symmetric lattice equations: symmetry analysis and reductions
We consider lattice equations on Z2 which are autonomous, affine linear and possess the symmetries of the square. Some basic properties of equations of this type are derived, as well as a sufficient linearization condition and a conservation law. A systematic analysis of the Lie point and the generalized three- and five-point symmetries is presented. It leads to the generic form of the symmetry generators of all the equations in this class, which satisfy a certain non-degeneracy condition. Finally, symmetry reductions of certain lattice equations to discrete analogs of the Painlevé equations are considered
Recursion operators, conservation laws, and integrability conditions for difference equations
We attempt to propose an algebraic approach to the theory of integrable difference equations. We define the concept of a recursion operator for difference equations and show that it generates an infinite sequence of symmetries and canonical conservation laws for a difference equation. As in the case of partial differential equations, these canonical densities can serve as integrability conditions for difference equations. We obtain the recursion operators for the Viallet equation and all the Adler–Bobenko–Suris equations