496 research outputs found
Solar Chameleons
We analyse the creation of chameleons deep inside the sun and their
subsequent conversion to photons near the magnetised surface of the sun. We
find that the spectrum of the regenerated photons lies in the soft X-ray
region, hence addressing the solar corona problem. Moreover, these
back-converted photons originating from chameleons have an intrinsic difference
with regenerated photons from axions: their relative polarisations are mutually
orthogonal before Compton interacting with the surrounding plasma. Depending on
the photon-chameleon coupling and working in the strong coupling regime of the
chameleons to matter, we find that the induced photon flux, when regenerated
resonantly with the surrounding plasma, coincides with the solar flux within
the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a
prior, we find that with a strong enough photon-chameleon coupling the
chameleons emitted by the sun could lead to a regenerated photon flux in the
CAST pipes, which could be within the reach of CAST with upgraded detector
performance. Then, axion helioscopes have thus the potential to detect and
identify particles candidates for the ubiquitous dark energy in the universe.Comment: 16 pages, 6 figures
A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research
We report on the design, construction and operation of a low background x-ray
detection line composed of a shielded Micromegas (micromesh gaseous structure)
detector of the microbulk technique. The detector is made from radiopure
materials and is placed at the focal point of a ~5 cm diameter, 1.3 m
focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of
thermally-formed (or "slumped") glass substrates deposited with multilayer
coatings. The system has been conceived as a technological pathfinder for the
future International Axion Observatory (IAXO), as it combines two of the
techniques (optic and detector) proposed in the conceptual design of the
project. It is innovative for two reasons: it is the first time an x-ray optic
has been designed and fabricated specifically for axion research, and the first
time a Micromegas detector has been operated with an x-ray optic. The line has
been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and
is currently looking for solar axions. The combination of the XRT and
Micromegas detector provides the best signal-to-noise ratio obtained so far by
any detection system of the CAST experiment with a background rate of
5.410counts per hour in the energy region-of-interest and
signal spot area.Comment: 21 pages, 16 figure
Neutron spectroscopy with the Spherical Proportional Counter
A novel large volume spherical proportional counter, recently developed, is
used for neutron measurements. Gas mixtures of with and
pure are studied for thermal and fast neutron detection, providing a
new way for the neutron spectroscopy. The neutrons are detected via the
and reactions. Here we
provide studies of the optimum gas mixture, the gas pressure and the most
appropriate high voltage supply on the sensor of the detector in order to
achieve the maximum amplification and better resolution. The detector is tested
for thermal and fast neutrons detection with a and a
neutron source. The atmospheric neutrons are successfully
measured from thermal up to several MeV, well separated from the cosmic ray
background. A comparison of the spherical proportional counter with the current
available neutron counters is also given.Comment: 7 pages, 10 figure
The Micromegas detector of the CAST experiment
A low background Micromegas detector has been operating in the CAST
experiment at CERN for the search of solar axions during the first phase of the
experiment (2002-2004). The detector, made out of low radioactivity materials,
operated efficiently and achieved a very low level of background rejection (5 x
10^-5 counts/keV/cm^2/s) without shielding.Comment: 13 pages, 12 figures and images, submitted to New Journal o
X-ray detection with Micromegas with background levels below 10 keVcms
Micromegas detectors are an optimum technological choice for the detection of
low energy x-rays. The low background techniques applied to these detectors
yielded remarkable background reductions over the years, being the CAST
experiment beneficiary of these developments. In this document we report on the
latest upgrades towards further background reductions and better understanding
of the detectors' response. The upgrades encompass the readout electronics, a
new detector design and the implementation of a more efficient cosmic muon veto
system. Background levels below 10keVcms have been
obtained at sea level for the first time, demonstrating the feasibility of the
expectations posed by IAXO, the next generation axion helioscope. Some results
obtained with a set of measurements conducted in the x-ray beam of the CAST
Detector Laboratory will be also presented and discussed
Micromegas operation in high pressure xenon: charge and scintillation readout
The operational characteristics of a Micromegas operating in pure xenon at
the pressure range of 1 to 10 bar are investigated. The maximum charge gain
achieved in each pressure is approximately constant, around 4x10^2, for xenon
pressures up to 5 bar and decreasing slowly above this pressure down to values
somewhat above 10^2 at 10 bar. The MM presents the highest gains for xenon
pressures above 4 bar, when compared to other micropattern gaseous multipliers.
The lowest energy resolution obtained for X-rays of 22.1 keV exhibits a steady
increase with pressure, from 12% at 1bar to about 32% at 10 bar. The effective
scintillation yield, defined as the number of photons exiting through the MM
mesh holes per primary electron produced in the conversion region was
calculated. This yield is about 2x10^2 photons per primary electron at 1 bar,
increasing to about 6x10^2 at 5 bar and, then, decreasing again to 2x10^2 at 10
bar. The readout of this scintillation by a suitable photosensor will result in
higher gains but with increased statistical fluctuations.Comment: 22 pages, 11 figure
- …
