1,336 research outputs found
LITERACY OF COMMUNICATION IN EARLY CHILDHOOD EDUCATION: INVESTIGATING COMMUNICATION STRATEGIES IN GREECE
This study explores the communication strategies employed by young children in early childhood education settings in Greece, as observed by educators. The research aims to understand how children utilize and adapt various communication styles within school environments. The study involved 44 participants, including undergraduate students majoring in Early Childhood Education and Care, as well as early childhood educators. Data was collected using a comprehensive questionnaire that examined different types of communication strategies and the specific contexts in which these strategies are used. Analysis of the data revealed that educators employ diverse techniques, such as incorporating music and encouraging role-playing games, to enhance children's communication skills. Conversely, children utilize a range of strategies to engage attention and interact effectively with peers and educators. These findings underscore the dynamic interplay between educator-facilitated activities and children's innate communication efforts, offering insights into improving communicative literacy in early education. Article visualizations
Assistive Technology for Higher Education Students with Disabilities: A Qualitative Research
The objective of this qualitative investigation is to identify the assistive technology recognized by students with disabilities and to determine the assistive technology (software apps and devices) they require both at university and at home. A total of forty-two students, comprising 20 males and 22 females, were recruited from four different countries (Germany, Greece, Italy, and Spain) for participation in this study. The sample encompassed 10 students with visual impairments, 11 with hearing impairments, 11 with mobility impairments, and 10 with specific learning disabilities. Semi-structured interviews were conducted with the students either online or in person. Content analysis was employed to scrutinize the data obtained from these interviews. The outcomes of this analysis shed light on the assistive technology acknowledged, utilized, or desired by students with disabilities in both academic and domestic settings. The findings from this study carry practical implications for fostering inclusive and accessible education within higher education institutions, benefiting accessibility units/offices staff as well as teaching personnel.This research was funded by ERASMUS+ (Strategic Partnerships), grant number 2021-1-EL01-KA220-HED-000032260. The research was conducted in the frames of the HEDforALL (Holistic Approach to Accessible Higher Education) project
Interactions Between Repetitive Mild Traumatic Brain Injury and Methylphenidate Administration on Catecholamine Transporter Protein Levels Within the Rodent Prefrontal Cortex
It is theorized that low concentrations of dopamine (DA) and norepinephrine (NE) within in the prefrontal cortex (PFC) following traumatic brain injury (TBI) leads to increased risky behavior. Our lab has shown that repeated mild TBI (rmTBI) sex-differentially increases risky behavior in a rodent model. Methylphenidate (MPH) is a psychostimulant drug used to treat symptoms of Attention-Deficit Hyperactivity Disorder (ADHD), also driven by a hypo-catecholaminergic PFC. MPH elevates catecholamine levels by blocking DA and NE transporters, DAT and NET. While the potential of psychostimulants to treat post-TBI symptoms have been explored, the effects of sub-chronic MPH on transporter levels following rmTBI has not.
To investigate this gap, we used the closed head-controlled cortical impact model to induce 3 mild injuries in Long Evans rats of both sexes. Rats received either saline or MPH (2mg/kg) daily for 7 days (4 groups; sham/saline, sham/MPH, rmTBI/saline, rmTBI/MPH). Brain tissue from the medial (mPFC) and orbitofrontal (OFC) regions of the PFC were collected and standard western blotting protocols were used to measure protein levels of NET, tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2), catechol-O-methyltransferase (COMT) and monoamine oxidase (MOA). Within the mPFC, female NET and VMAT levels were decreased in the rmTBI/saline group, while the rmTBI/MPH group’s protein levels did not differ from controls. In males, mPFC VMAT levels were decreased in both rmTBI groups. Within the OFC, NET and VMAT levels were decreased in the male rmTBI/MPH group only.
These results suggest that rmTBI reduces transporter levels within regions of the PFC and that sub-chronic MPH treatment may produce restorative benefits on these protein levels in female, but not male rodents following rmTBI. We conclude that interactions between rmTBI and MPH on levels of catecholamine regulatory proteins may begin to elucidate sex differential changes in risk-taking behavior following injury and treatment
Examining Levels of Catecholamine Neurotransmitter Regulatory Proteins Within the Prefrontal Cortex of Rodents Following Traumatic Brain Injury
Traumatic brain injury (TBI) resulting from impact to the head can cause long lasting impairments of cognitive processes that lead to increased risk-taking behavior in clinical populations. Our laboratory has recently shown that female, but not age-matched male, rats increase preference for risky choices after multiple experimentally-induced mild TBI’s. Our overarching goal is to understand the neural mechanisms underlying TBI-induced increases in risk-taking behavior.
The prefrontal cortex (PFC) plays a prominent role in risk-based decision making. Sub[1]regions of the PFC include the medial PFC (mPFC), the orbitofrontal cortex (OFC), and the anterior cingulate cortex (ACC), and these sub[1]regions play specific roles in decision-making processes. Catecholamine neurotransmitter circuits, such as the dopamine (DA) and norepinephrine (NE) systems, project to the PFC and modulate the PFC’s control over executive functions. Previous studies have demonstrated that both dopamine (DA) and norepinephrine (NE) transmitter levels are increased in the PFC immediately following TBI, which is then followed by a persistent hypo-catecholaminergic state. These results suggest that an imbalance of catecholamine levels within the PFC may underlie aberrant decision-making behavior following TBI; however, it is not presently known what processes contribute to TBI-induced catecholamine imbalance.
Here we examined how levels of catecholamine neurotransmitter regulatory proteins responsible for packaging (VMAT2) and degrading (COMT and MAO) are altered to explain chronic decreases in DA and NE levels observed in the PFC following TBI. Age-matched adult male and female Long Evans rats (n=6-8) were exposed to either a single or a series of three closed head controlled cortical impact (CH-CCI) injuries over the course of one week. Rats were sacrificed and brain tissue (mPFC, OFC, and ACC) were collected and standard western blotting protocols were used to measure the levels of VMAT2, COMT, and MAO in each sub-region
Perturbations in Risk/Reward Decision Making and Frontal Cortical Catecholamine Regulation Induced by Mild Traumatic Brain Injury
Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries
Towards Efficient Decentralized Federated Learning
We focus on the problem of efficiently deploying a federated learning training task in a decentralized setting with multiple aggregators. To that end, we introduce a number of improvements and modifications to the recently proposed IPLS protocol. In particular, we relax its assumption for direct communication across participants, using instead indirect communication over a decentralized storage system, effectively turning it into a partially asynchronous protocol. Moreover, we secure it against malicious aggregators (that drop or alter data) by relying on homomorphic cryptographic commitments for efficient verification of aggregation. We implement the modified IPLS protocol and report on its performance and potential bottlenecks. Finally, we identify important next steps for this line of research
Protection scheme for multi-terminal HVDC system with superconducting cables based on artificial intelligence algorithms
This paper presents the development of a novel data-driven fault detection and classification scheme for DC faults in multi-terminal HVDC transmission system which incorporates superconducting cables and modular multi-level converters. As the deployment of superconducting cables for bulk power transmission from remote renewable generation is progressively increasing in the future energy grids, many fault-related challenges have been raised (i.e., fault detection, protection sensitivity/stability). In this context, the applications of Artificial Intelligence techniques have started to be considered as a powerful tool for the development of robust fault management solutions. The proposed artificial intelligence-based method utilizes local current and voltage measurements to detect and classify all types of faults on the DC cables and DC buses, without the requirement of measurements exchange among different DC substations. The performance of the proposed scheme has been assessed through detailed transient simulation analysis and the results confirmed its effectiveness against a wide range of fault conditions (i.e., various fault types, fault locations and fault resistances). Furthermore, the feasibility of the developed scheme for real-time implementation has been validated using real-time software in the loop testing. The results revealed that the proposed algorithm can correctly, and within a very short period of time (i.e. less than 2 ms) detect and classify the faults within the protected zone and concurrently remain stable during external faults. Additionally, the generalization capability of the algorithm has been verified against influencing factors such as the addition of noise, highlighting the robustness of the presented scheme
Sickness Absence in the Private Sector of Greece: Comparing Shipyard Industry and National Insurance Data
Approximately 3% of employees are absent from work due to illness daily in Europe, while in some countries sickness absence exceeds 20 days per year. Based on a limited body of reliable studies, Greek employees in the private sector seem to be absent far less frequently (<5 days/year) compared to most of the industrialized world. The aim of this study was to estimate the levels of sickness absence in the private sector in Greece, using shipyard and national insurance data. Detailed data on absenteeism of employees in a large shipyard company during the period 1999–2006 were utilized. National data on compensated days due to sickness absence concerning all employees (around 2 million) insured by the Social Insurance Institute (IKA, the largest insurance scheme in Greece) were retrieved from the Institute’s annual statistical reports for the period 1987–2006. Sick-leave days per employee and sick-leave rate (%) were calculated, among other indicators. In the shipyard cohort, the employment time loss due to sick leave was 1%. The mean number of sick-leave days per employee in shipyards ranged between 4.6 and 8.7 and sick-leave rate (sickness absenteeism rate) varied among 2% and 3.7%. The corresponding indicators for IKA were estimated between 5 and 6.3 sick-leave days per insured employee (median 5.8), and 2.14–2.72% (median 2.49%), respectively. Short sick-leave spells (<4 days) may account at least for the 25% of the total number of sick-leave days, currently not recorded in national statistics. The level of sickness absence in the private sector in Greece was found to be higher than the suggested by previous reports and international comparative studies, but still remains one of the lowest in the industrialized world. In the 20-years national data, the results also showed a 7-year wave in sickness absence indexes (a decrease during the period 1991–1997 and an increase in 1998–2004) combined with a small yet significant decline as a general trend. These observations deserve detailed monitoring and could only partly be attributed to the compensation and unemployment rates in Greece so other possible reasons should be explored
Bottom-up development of nanoimprinted PLLA composite films with enhanced antibacterial properties for smart packaging applications
Altres ajuts: ICN2 is supported by the CERCA Program/Generalitat de Catalunya.In this work, polymer nanocomposite films based on poly(L-lactic acid) (PLLA) were reinforced with mesoporous silica nanoparticles, mesoporous cellular foam (MCF) and Santa Barbara amorphous-15 (SBA). PLLA is a biobased aliphatic polyester, that possesses excellent thermomechanical properties, and has already been commercialized for packaging applications. The aim was to utilize nanoparticles that have already been established as nanocarriers to enhance the mechanical and thermal properties of PLLA. Since the introduction of antibacterial properties has become an emerging trend in packaging applications, to achieve an effective antimicrobial activity, micro/nano 3D micropillars decorated with cone- and needle-shaped nanostructures were implemented on the surface of the films by means of thermal nanoimprint lithography (t-NIL), a novel and feasible fabrication technique with multiple industrial applications. The materials were characterized regarding their composition and crystallinity using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD), respectively, and their thermal properties using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Their mechanical properties were examined by the nanoindentation technique, while the films' antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus strains was tested in vitro. The results demonstrated the successful production of nanocomposite PLLA films, which exhibited improved mechanical and thermal properties compared to the pristine material, as well as notable antibacterial activity, setting new groundwork for the potential development of biobased smart packaging materials
Case Report: Endoscopic radiofrequency ablation with radial-EBUS and ROSE
BackgroundSingle pulmonary nodules are a common issue in everyday clinical practice. Currently, there are navigation systems with radial-endobronchial ultrasound and electromagnetic navigation for obtaining biopsies. Moreover, rapid on-site evaluation can be used for a quick assessment. These small lesions, even when they do not have any clinically significant information with positron emission tomography, are important to investigate.Case descriptionRadiofrequency and microwave ablation have been evaluated as local treatment techniques. These techniques can be used as therapy for a patient population that cannot be operated on. Currently, one verified operating system is used for endoscopic radiofrequency ablation through the working channel of a bronchoscope.ConclusionIn our case, a new system was used to perform radiofrequency ablation with long-term follow-up
- …