5,854 research outputs found
Calibration of Polarization Fields and Electro-Optical Response of Group-III Nitride Based c-Plane Quantum-Well Heterostructures by Application of Electro-Modulation Techniques
The polarization fields and electro-optical response of PIN-diodes based on nearly lattice-matched InGaN/GaN and InAlN/GaN double heterostructure quantum wells grown on (0001) sapphire substrates by metalorganic vapor phase epitaxy were experimentally quantified. Dependent on the indium content and the applied voltage, an intense near ultra-violet emission was observed from GaN (with fundamental energy gap Eg = 3.4 eV) in the electroluminescence (EL) spectra of the InGaN/GaN and InAlN/GaN PIN-diodes. In addition, in the electroreflectance (ER) spectra of the GaN barrier structure of InAlN/GaN diodes, the three valence-split bands, Γ9, Γ7+, and Γ7−, could selectively be excited by varying the applied AC voltage, which opens new possibilities for the fine adjustment of UV emission components in deep well/shallow barrier DHS. The internal polarization field Epol = 5.4 ± 1.6 MV/cm extracted from the ER spectra of the In0.21Al0.79N/GaN DHS is in excellent agreement with the literature value of capacitance-voltage measurements (CVM) Epol = 5.1 ± 0.8 MV/cm. The strength and direction of the polarization field Epol = −2.3 ± 0.3 MV/cm of the (0001) In0.055Ga0.945N/GaN DHS determined, under flat-barrier conditions, from the Franz-Keldysh oscillations (FKOs) of the electro-optically modulated field are also in agreement with the CVM results Epol = −1.2 ± 0.4 MV/cm. The (absolute) field strength is accordingly significantly higher than the Epol strength quantified in published literature by FKOs on a semipolar (112¯2) oriented In0.12Ga0.88N quantum well
Nuclear three-body problem in the complex energy plane: Complex-Scaling-Slater method
The physics of open quantum systems is an interdisciplinary area of research.
The nuclear "openness" manifests itself through the presence of the many-body
continuum representing various decay, scattering, and reaction channels. As the
radioactive nuclear beam experimentation extends the known nuclear landscape
towards the particle drip lines, the coupling to the continuum space becomes
exceedingly more important. Of particular interest are weakly bound and unbound
nuclear states appearing around particle thresholds. Theories of such nuclei
must take into account their open quantum nature. To describe open quantum
systems, we introduce a Complex Scaling (CS) approach in the Slater basis. We
benchmark it with the complex-energy Gamow Shell Model (GSM) by studying
energies and wave functions of the bound and unbound states of the two-neutron
halo nucleus 6He viewed as an + n + n cluster system. In the CS
approach, we use the Slater basis, which exhibits the correct asymptotic
behavior at large distances. To extract particle densities from the
back-rotated CS solutions, we apply the Tikhonov regularization procedure,
which minimizes the ultraviolet numerical noise. While standard applications of
the inverse complex transformation to the complex-rotated solution provide
unstable results, the stabilization method fully reproduces the GSM benchmark.
We also propose a method to determine the smoothing parameter of the Tikhonov
regularization. The combined suite of CS-Slater and GSM techniques has many
attractive features when applied to nuclear problems involving weakly-bound and
unbound states. While both methods can describe energies, total widths, and
wave functions of nuclear states, the CS-Slater method, if it can be applied,
can provide an additional information about partial energy widths associated
with individual thresholds.Comment: 15 pages, 16 figure
Ab-initio No-Core Gamow Shell Model calculations with realistic interactions
No-Core Gamow Shell Model (NCGSM) is applied for the first time to study
selected well-bound and unbound states of helium isotopes. This model is
formulated on the complex energy plane and, by using a complete Berggren
ensemble, treats bound, resonant, and scattering states on equal footing. We
use the Density Matrix Renormalization Group method to solve the many-body
Schr\"{o}dinger equation. To test the validity of our approach, we benchmarked
the NCGSM results against Faddeev and Faddeev-Yakubovsky exact calculations for
H and He nuclei. We also performed {\textit ab initio} NCGSM
calculations for the unstable nucleus He and determined the ground state
energy and decay width, starting from a realistic NLO chiral interaction.Comment: 17 pages, 14 figures. Revised version. Discussion on microscopic
overlap functions, SFs and ANCs is added. Added references. Accepted for
publication at PR
Optimal competitiveness for the Rectilinear Steiner Arborescence problem
We present optimal online algorithms for two related known problems involving
Steiner Arborescence, improving both the lower and the upper bounds. One of
them is the well studied continuous problem of the {\em Rectilinear Steiner
Arborescence} (). We improve the lower bound and the upper bound on the
competitive ratio for from and to
, where is the number of Steiner
points. This separates the competitive ratios of and the Symetric-,
two problems for which the bounds of Berman and Coulston is STOC 1997 were
identical. The second problem is one of the Multimedia Content Distribution
problems presented by Papadimitriou et al. in several papers and Charikar et
al. SODA 1998. It can be viewed as the discrete counterparts (or a network
counterpart) of . For this second problem we present tight bounds also in
terms of the network size, in addition to presenting tight bounds in terms of
the number of Steiner points (the latter are similar to those we derived for
)
Online Admission Control and Embedding of Service Chains
The virtualization and softwarization of modern computer networks enables the
definition and fast deployment of novel network services called service chains:
sequences of virtualized network functions (e.g., firewalls, caches, traffic
optimizers) through which traffic is routed between source and destination.
This paper attends to the problem of admitting and embedding a maximum number
of service chains, i.e., a maximum number of source-destination pairs which are
routed via a sequence of to-be-allocated, capacitated network functions. We
consider an Online variant of this maximum Service Chain Embedding Problem,
short OSCEP, where requests arrive over time, in a worst-case manner. Our main
contribution is a deterministic O(log L)-competitive online algorithm, under
the assumption that capacities are at least logarithmic in L. We show that this
is asymptotically optimal within the class of deterministic and randomized
online algorithms. We also explore lower bounds for offline approximation
algorithms, and prove that the offline problem is APX-hard for unit capacities
and small L > 2, and even Poly-APX-hard in general, when there is no bound on
L. These approximation lower bounds may be of independent interest, as they
also extend to other problems such as Virtual Circuit Routing. Finally, we
present an exact algorithm based on 0-1 programming, implying that the general
offline SCEP is in NP and by the above hardness results it is NP-complete for
constant L.Comment: early version of SIROCCO 2015 pape
The K-Server Dual and Loose Competitiveness for Paging
This paper has two results. The first is based on the surprising observation
that the well-known ``least-recently-used'' paging algorithm and the
``balance'' algorithm for weighted caching are linear-programming primal-dual
algorithms. This observation leads to a strategy (called ``Greedy-Dual'') that
generalizes them both and has an optimal performance guarantee for weighted
caching.
For the second result, the paper presents empirical studies of paging
algorithms, documenting that in practice, on ``typical'' cache sizes and
sequences, the performance of paging strategies are much better than their
worst-case analyses in the standard model suggest. The paper then presents
theoretical results that support and explain this. For example: on any input
sequence, with almost all cache sizes, either the performance guarantee of
least-recently-used is O(log k) or the fault rate (in an absolute sense) is
insignificant.
Both of these results are strengthened and generalized in``On-line File
Caching'' (1998).Comment: conference version: "On-Line Caching as Cache Size Varies", SODA
(1991
Anatomy of bubbling solutions
We present a comprehensive analysis of holography for the bubbling solutions
of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring
of a 2-plane, which was argued to correspond to the phase space of free
fermions. We show that in general this phase space distribution does not
determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is
dual to, but it does determine it enough so that vevs of all single trace 1/2
BPS operators in that state are uniquely determined to leading order in the
large N limit. These are precisely the vevs encoded in the asymptotics of the
LLM solutions. We extract these vevs for operators up to dimension 4 using
holographic renormalization and KK holography and show exact agreement with the
field theory expressions.Comment: 67 pages, 6 figures; v2: typos corrected, refs added; v3: expanded
explanations, more typos correcte
An integrated process of biodiesel production from indigenous microalgae in Northern Greece: first results
For environmental, economic and competence reasons, the fuel industry has pushed for alternative fuels in the past few years. One option that is considered are biofuels, which are renewable fuels and have the characteristic of lower or zero emissions of CO2 in the lifecycle, depending on their origin, their production and use. That is done, because the carbon they contain has been committed in the development of organic matter from the atmosphere, which returns after combustion so the balance of emissions throughout the life cycle of biofuel is "theoretically zero
SEMI-MARKOV MODELS FOR SEISMIC HAZARD ASSESSMENT IN CERTAIN AREAS OF GREECE
The long-term probabilistic seismic hazard is studied through the application of semi-Markov model. In this model a sequence of earthquakes is considered as a Markov process and the waiting time distributions depend only on the type of the last and the next event. The principal hypothesis of the model is the property of one-step memory, according to which the probability of moving to any future state depends only on the present state. The model under consideration defines a continuous-time, discrete-state stationary process in which successive state occupancies are governed by the transition probabilities of the Markov process. The space of states is considered to be finite and the process started far in the past has achieved stationarity. Firstly, a non-parametric method is applied in order to determine the waiting times. Then, the waiting times derived by means of the exponential and Weibull distributions will be compared to each other, as well as with the actual waiting times. Thus, the probability of occurrence of the anticipated earthquakes of a specific magnitude scale is calculated. The models are applied to an historical catalogue for Northern Aegean Sea
- …