54 research outputs found

    Endogenous neurotrophins are required for the induction of GABAergic long-term potentiation in the neonatal rat hippocampus.

    No full text
    International audienceIn the developing rat hippocampus, GABAergic synapses undergo a Ca2+-dependent long-term potentiation (LTP(GABA-A)); this form of synaptic plasticity is induced in CA3 pyramidal neurons by delivering repetitive depolarizing pulses (DPs) to the recorded neuron, and it is expressed as a long-lasting increase in the frequency and amplitude of spontaneous GABA(A) receptor-mediated postsynaptic currents. In the present study, we examined the role of endogenous tropomyosin-related kinase receptor B (TrkB) receptor ligands and associated protein tyrosine kinases (PTKs) in the induction of LTP(GABA-A). The application of Lavendustin A, a broad spectrum PTK inhibitor, blocked the induction of LTP(GABA-A), whereas Lavendustin B, its inactive form, had no effect. Moreover, k-252a and k-252b, two alkaloids that inhibit the kinase activity of the Trk receptor family, also prevented the induction of LTP(GABA-A). On hippocampal slices incubated with the soluble form of TrkB receptor IgG (TrkB-IgG), which prevents the activation of TrkB receptors by endogenous ligands, DPs failed to induce LTP(GABA-A), whereas the incubation with TrkA-IgG or TrkC-IgG had no such effect. Altogether, these data indicate that endogenous TrkB ligands and associated PTK activity are necessary for the induction of GABAergic LTP in the developing rat hippocampus

    Postnatal Tshz3 Deletion Drives Altered Corticostriatal Function and Autism Spectrum Disorder–like Behavior

    Get PDF
    International audienceBACKGROUND: Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed at gaining more insight into "when" and "where" TSHZ3 is required for the proper development of the brain, and its deficiency crucial for developing this ASD syndrome. METHODS: We generated and characterized a novel mouse model of conditional Tshz3 deletion, obtained by crossing Tshz3 flox/flox with CaMKIIalpha-Cre mice, in which Tshz3 is deleted in CPNs from postnatal day 2 to 3 onward. We characterized these mice by a multilevel approach combining genetics, cell biology, electrophysiology, behavioral testing, and bioinformatics. RESULTS: These conditional Tshz3 knockout mice exhibit altered cortical expression of more than 1000 genes, w50% of which have their human orthologue involved in ASD, in particular genes encoding for glutamatergic syn-apse components. Consistently, we detected electrophysiological and synaptic changes in CPNs and impaired corticostriatal transmission and plasticity. Furthermore, these mice showed strong ASD-like behavioral deficits. CONCLUSIONS: Our study reveals a crucial postnatal role of TSHZ3 in the development and functioning of the corticostriatal circuitry and provides evidence that dysfunction in these circuits might be determinant for ASD pathogenesis. Our conditional Tshz3 knockout mouse constitutes a novel ASD model, opening the possibility for an early postnatal therapeutic window for the syndrome linked to TSHZ3 haploinsufficiency

    Ciliary Neurotrophic Factor Protects Striatal Neurons against Excitotoxicity by Enhancing Glial Glutamate Uptake

    Get PDF
    Ciliary neurotrophic factor (CNTF) is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs) could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injection of the excitotoxin quinolinic acid (QA) was significantly reduced (by ∼75%) in CNTF-treated animals. In striatal slices, acute QA application dramatically inhibited corticostriatal field potentials (FPs), whose recovery was significantly higher in CNTF rats compared to controls (∼40% vs. ∼7%), confirming an enhanced resistance to excitotoxicity. The GT inhibitor dl-threo-β-benzyloxyaspartate greatly reduced FP recovery in CNTF rats, supporting the role of GT in CNTF-mediated neuroprotection. Whole-cell patch-clamp recordings from striatal medium spiny neurons showed no alteration of basic properties of striatal glutamatergic transmission in CNTF animals, but the increased effect of a low-affinity competitive glutamate receptor antagonist (γ-d-glutamylglycine) also suggested an enhanced GT function. These data strongly support our hypothesis that CNTF is neuroprotective via an increased function of glial GTs, and further confirms the therapeutic potential of CNTF for the clinical treatment of progressive neurodegenerative diseases involving glutamate overflow

    Notulae to the Italian alien vascular flora: 12

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, exclusions, and status changes for Italy or for Italian administrative regions. Nomenclatural and distribution updates published elsewhere are provided as Suppl. material 1

    Notulae to the Italian alien vascular flora: 11

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, exclusions, and status changes for Italy or for Italian administrative regions. Nomenclatural and distribution updates published elsewhere are provided as Suppl. material 1

    Effects of GPi and STN inactivation on physiological, motor, cognitive and motivational processes in animal models of Parkinson's disease

    No full text
    International audienceLoss of the dopaminergic input to the striatum, characterizing Parkinson's disease, leads to the hyper-activity of two key nuclei of the basal ganglia (BG): the subthalamic nucleus (STN) and the internal segment of the globus pallidus (GPi). The anatomo-physiological organization of the BG and their output suggested that interfering with such hyper-activity could restore motor function and improve parkinsonism. Several animal models in rodents and primates, as well as clinical studies and neurosurgical treatments, have confirmed such hypothesis. This chapter will review the physiological and behavioural data obtained by inactivating the GPi or the STN by means of lesions, pharmacological approaches and deep brain stimulation. The consequences of these treatments will be examined at levels ranging from cellular to complex behavioural changes. Some of this experimental evidence suggested new and effective clinical treatments for PD, which are now routinely used worldwide. However, further studies are necessary to better understand the consequences of GPi and STN manipulation especially at the cognitive level in order to improve functional neurosurgical treatments for Parkinson's disease by minimizing risks of side-effects

    Clinical Trials in Parkinson’s Disease

    No full text
    International audienc

    Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: from experimental models to neurodegenerative diseases

    Get PDF
    International audienceMitochondrial dysfunctions have been implicated in the cellular processes underlying several neurodegenerative disorders affecting the basal ganglia. These include Huntington's chorea and Parkinson's disease, two highly debilitating motor disorders for which recent research has also involved gene mutation linked to mitochondrial deficits. Experimental models of basal ganglia diseases have been developed by using toxins able to disrupt mitochondrial function: these molecules act by selectively inhibiting mitochondrial respiratory complexes, uncoupling cellular respiration. This in turn leads to oxidative stress and energy deficit that trigger critical downstream mechanisms, ultimately resulting in neuronal vulnerability and loss. Here we review the molecular and cellular downstream effects triggered by mitochondrial dysfunction, and the different experimental models that are obtained by the administration of selective mitochondrial toxins or by the expression of mutant genes
    • …
    corecore