2,112 research outputs found

    Sensitivity to sgoldstino states at the future linear e+e−e^+e^- and photon colliders

    Get PDF
    Sensitivity to the supersymmetric scalar states ϕ\phi at the future linear e+e−e^+e^- and photon colliders is discussed. In particular it is illustrated a search strategy for massive sgoldstinos, the supersymmetric partners of the goldstino

    CALET on the International Space Station: new direct measurements of cosmic-ray iron and nickel

    Get PDF
    The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray over a wide energy interval. Approximately 20 million triggered events per month are recorded with energies > 10 GeV. The instrument identifies the charge of individual elements up to nickel and beyond and, thanks to a homogeneous lead-tungstate calorimeter, it measures the energy of cosmic-ray nuclei providing a direct measurement of their spectra. Iron and nickel spectra are a low background measurement with negligible contamination from spallation of higher mass elements. Iron and nickel nuclei play a key role in understanding the acceleration and propagation mechanisms of charged particles in our Galaxy. In this contribution a direct measurement of iron and nickel spectra, based on more than five years of data, are presented in the energy range from 10 GeV/n to 2 TeV/n and from 8.8 GeV/n to 240 GeV/n, respectively. The spectra are compatible within the errors with a single power law in the energy region from 50 GeV/n to 2 TeV/n and from 20 GeV/n to 240 GeV/n, respectively. Systematic uncertainties are detailed and the nickel to iron flux ratio is presented. This unprecedented measurement confirms that both elements have very similar fluxes in shape and energy dependence, suggesting that their origin, acceleration, and propagation might be explained invoking an identical mechanism in the energy range explored so far

    CALET on the International Space Station: a precise measurement of the iron spectrum

    Get PDF
    The Calorimetric Electron Telescope (CALET) was launched on the International Space Station in 2015 and since then has collected a large sample of cosmic-ray charged particles over a wide energy. Thanks to a couple of layers of segmented plastic scintillators placed on top of the detector, the instrument is able to identify the charge of individual elements from proton to iron (and above). The imaging tungsten scintillating fiber calorimeter provides accurate particle tracking and the lead tungstate homogeneous calorimeter can measured the energy with a wide dynamic range. One of the CALET scientific objectives is to measure the energy spectra of cosmic rays to shed light on their acceleration and propagation in the Galaxy. By the observation in first five years, a precise measurement of the iron spectrum is now available in the range of kinetic energy per nucleon from 10 GeV/n to 2 TeV/n. The CALET’s result with a description of the analysis and details on systematic uncertainties will be illustrated. Also, a comparison with previous experiments’ results is given

    Defining the Risk and Associated Morbidity and Mortality of Severe Respiratory Syncytial Virus Infection Among Infants with Chronic Lung Disease

    Get PDF
    INTRODUCTION: The REGAL (RSV evidence-a geographical archive of the literature) series provide a comprehensive review of the published evidence in the field of respiratory syncytial virus (RSV) in Western countries over the last 20 years. This third publication covers the risk and burden of RSV infection in infants with chronic lung disease (CLD), formerly called bronchopulmonary dysplasia (BPD). METHODS: A systematic review was undertaken of publications between January 1, 1995 and December 31, 2015 across PubMed, Embase, The Cochrane Library, and Clinicaltrials.gov. Studies reporting data for hospital visits/admissions for RSV infection among infants with CLD/BPD who were not prophylaxed, as well as studies reporting RSV-associated morbidity, mortality, and healthcare costs, were included. Burdens of disease data were compared with preterm infants without CLD/BPD, other high-risk groups and term infants. Study quality and strength of evidence (SOE) were graded using recognized criteria. RESULTS: A total of 1837 studies were identified and 39 were included. CLD/BPD is a significant independent risk factor for RSV hospitalization [RSVH (odds ratio 2.2-7.2); high SOE]. Infants and young children with CLD/BPD had high RSVH rates which were generally similar in Europe, the United States, and Canada, mostly varying between 12 and 21%. Infants with CLD also had a longer length of hospital stay than other high-risk groups and term infants (high SOE). On average, infants spent 4-11 days in hospital (moderate SOE). Once hospitalized for RSV, affected children were at risk for a more severe course of disease than children with no RSVH (moderate SOE). CONCLUSION: Severe RSV infection in infants and young children with CLD/BPD poses a significant health burden in Western countries. Further studies focussing on the burden of RSV infection in this well-recognized population at high risk for severe disease are needed to help improve outcomes and plan allocation of healthcare resources. FUNDING: AbbVie

    Precision measurements of Linear Scattering Density using Muon Tomography

    Full text link
    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.Comment: 16 pages, 4 figure

    The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations

    Get PDF
    Calorimetric space experiments were employed for the direct measurements of cosmic-ray spectra above the TeV region. According to several theoretical models and recent measurements, relevant features in both electron and nucleus fluxes are expected. Unfortunately, sizable disagreements among the current results of different space calorimeters exist. In order to improve the accuracy of future experiments, it is fundamental to understand the reasons of these discrepancies, especially since they are not compatible with the quoted experimental errors. A few articles of different collaborations suggest that a systematic error of a few percentage points related to the energy-scale calibration could explain these differences. In this work, we analyze the impact of the nonproportionality of the light yield of scintillating crystals on the energy scale of typical calorimeters. Space calorimeters are usually calibrated by employing minimal ionizing particles (MIPs), e.g., nonshowering proton or helium nuclei, which feature different ionization density distributions with respect to particles included in showers. By using the experimental data obtained by the CaloCube collaboration and a minimalist model of the light yield as a function of the ionization density, several scintillating crystals (BGO, CsI(Tl), LYSO, YAP, YAG and BaF2) are characterized. Then, the response of a few crystals is implemented inside the Monte Carlo simulation of a space calorimeter to check the energy deposited by electromagnetic and hadronic showers. The results of this work show that the energy scale obtained by MIP calibration could be affected by sizable systematic errors if the nonproportionality of scintillation light is not properly taken into account

    A shashlik calorimeter with longitudinal segmentation for a linear collider

    Get PDF
    Two techniques for longitudinal segmentation of shashlik calorimeters are proposed. Beam tests have demonstrated the technical feasibility of longitudinally segmented shashlik calorimeters in which longitudinal sampling is performed by lateral vacuum photodiodes or by using two scintillator types with different decay times. Results concerning energy resolution and e/Ï€ separation are presente

    Local Structure and Magnetism of Fe2O3 Maghemite Nanocrystals: The Role of Crystal Dimension

    Get PDF
    Here we report on the impact of reducing the crystalline size on the structural and magnetic properties of γ-Fe2O3 maghemite nanoparticles. A set of polycrystalline specimens with crystallite size ranging from ~2 to ~50 nm was obtained combining microwave plasma synthesis and commercial samples. Crystallite size was derived by electron microscopy and synchrotron powder diffraction, which was used also to investigate the crystallographic structure. The local atomic structure was inquired combining pair distribution function (PDF) and X-ray absorption spectroscopy (XAS). PDF revealed that reducing the crystal dimension induces the depletion of the amount of Fe tetrahedral sites. XAS confirmed significant bond distance expansion and a loose Fe-Fe connectivity between octahedral and tetrahedral sites. Molecular dynamics revealed important surface effects, whose implementation in PDF reproduces the first shells of experimental curves. The structural disorder affects the magnetic properties more and more with decreasing the nanoparticle size. In particular, the saturation magnetization reduces, revealing a spin canting effect. Moreover, a large effective magnetic anisotropy is measured at low temperature together with an exchange bias effect, a behavior that we related to the existence of a highly disordered glassy magnetic phase

    Calet upper limits on X-RAY and GAMMA-RAY counterparts of GW151226

    Get PDF
    We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view of ∼2 sr. The CALET gamma-ray burst monitor (CGBM) views ∼3 sr and ∼2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV-1 MeV and 40 keV-20 MeV bands respectively. We place a 90% upper limit of 2 ×10-7 erg cm-2 s-1 in the 1-100 GeV band where CAL reaches 15% of the integrated LIGO probability (∼1.1 sr). The CGBM 7σ upper limits are 1.0 ×10-6 erg cm-2 s-1 (7-500 keV) and 1.8 ×10-6 erg cm-2 s-1 (50-1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3-5 ×1049 erg s-1, which is significantly lower than typical short GRBs
    • …
    corecore