72 research outputs found
Seroepidemiology of <i>Trichomonas vaginalis</i> in rural women in Zimbabwe and patterns of association with HIV infection
Serological assays using dried blood spots from 5221 women in rural areas of eastern Zimbabwe
were used to assess the epidemiology of Trichomonas vaginalis infection, and its association with
HIV. Antibodies to T. vaginalis and to HIV were detected by enzyme immunoassays. Behavioural
and demographic data were collected by confidential questionnaires. In total, 516 (9.9%) women
were seropositive for T. vaginalis and seroprevalence increased with age among younger women.
Divorced, widowed and single women were more likely to be seropositive. After controlling for
age, seropositivity was significantly associated with being sexually active, having multiple sex
partners, having a partner who had multiple sex partners, and having a new sex partner in the
past year. Seropositivity was associated with a recent history of genital discharge. Overall, 208
(40.3%) T. vaginalis-positive samples were also positive for HIV, compared with 1106 (23.5%)
T. vaginalis-negative samples (age and sex adjusted OR 2.11, 95% CI 1.74–2.55, P<0.001). There
was increased risk for being HIV-positive amongst T. vaginalis-seropositive women regardless of
residence, employment or education. In a logistic regression controlling for common risk factors,
the association remained significant. T. vaginalis-seropositive young women with a history of
genital discharge were much more likely to be HIV-positive than women who were T. vaginalis-seronegative
and had no history of discharge (OR 6.08, 95% CI 2.95–12.53). Although a causal
relationship cannot be assumed, detection and treatment of trichomoniasis may be important in
strategies to reduce HIV transmission through sexually transmitted infection control
Genotypic and phenotypic features of enteropathogenic Escherichia coli isolated in industrialized and developing countries
Introduction: Typical EPEC are considered a leading cause of diarrhoea in developing countries, while atypical EPEC have been isolated more frequently in developed areas. The actual geographic distribution of the two EPEC subgroups is controversial, since data can be highly influenced by laboratory resources. This study aimed to compare the distribution of typical and atypical EPEC among children in developed and developing countries, and to characterize the bacterial isolates, using a unique methodological approach. Methodology: A total of 1,049 E. coli were isolated from faeces of children with acute diarrhoea in Mozambique, Angola and Italy, and processed by PCR to assess the presence of a large panel of virulence genes. All isolates classified as EPEC were further characterized by evaluating adherence and capability to induce actin rearrangement on Hep-2 cells. Results: Overall we isolated 59 EPEC, likewise distributed in the three countries, representing the 5.04%, 4.44% and 6.97% of all Mozambican, Angolan and Italian isolates, respectively. Nevertheless, the geographic distribution of the two EPEC subgroups was not homogeneous: in Italy we isolated 28 aEPEC but no tEPEC, while in Angola and Mozambique the percentage of the two subgroups was comparable. Twelve atypical EPEC were FAS positive and able to induce localized-like adherence on Hep-2 cells, but no correlation with the geographic origin of isolates was observed. Conclusion: Atypical EPEC are present in sub-Saharan areas in a percentage similar to that of typical strains, and are not mainly restricted to industrialized countries, as it was previously supposed
Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis
Both Mycoplasma hominis and Trichomonas vaginalis utilize arginine as an energy source via the arginine dihydrolase (ADH) pathway. It has been previously demonstrated that M. hominis forms a stable intracellular relationship with T. vaginalis; hence, in this study we examined the interaction of two localized ADH pathways by comparing T. vaginalis strain SS22 with the laboratory-generated T. vaginalis strain SS22-MOZ2 infected with M. hominis MOZ2. The presence of M. hominis resulted in an approximately 16-fold increase in intracellular ornithine and a threefold increase in putrescine, compared with control T. vaginalis cultures. No change in the activity of enzymes of the ADH pathway could be demonstrated in SS22-MOZ2 compared with the parent SS22, and the increased production of ornithine could be attributed to the presence of M. hominis. Using metabolic flow analysis it was determined that the elasticity of enzymes of the ADH pathway in SS22-MOZ2 was unchanged compared with the parent SS22; however, the elasticity of ornithine decarboxylase (ODC) in SS22 was small, and it was doubled in SS22-MOZ2 cells. The potential benefit of this relationship to both T. vaginalis and M. hominis is discussed
Genotypic and phenotypic features of enteropathogenic <i>Escherichia coli</i> isolated in industrialized and developing countries
Introduction: Typical EPEC are considered a leading cause of diarrhoea in developing countries, while atypical EPEC have been isolated more frequently in developed areas. The actual geographic distribution of the two EPEC subgroups is controversial, since data can be highly influenced by laboratory resources. This study aimed to compare the distribution of typical and atypical EPEC among children in developed and developing countries, and to characterize the bacterial isolates, using a unique methodological approach.
Methodology: A total of 1,049 E. coli were isolated from faeces of children with acute diarrhoea in Mozambique, Angola and Italy, and processed by PCR to assess the presence of a large panel of virulence genes. All isolates classified as EPEC were further characterized by evaluating adherence and capability to induce actin rearrangement on Hep-2 cells.
Results: Overall we isolated 59 EPEC, likewise distributed in the three countries, representing the 5.04%, 4.44% and 6.97% of all Mozambican, Angolan and Italian isolates, respectively. Nevertheless, the geographic distribution of the two EPEC subgroups was not homogeneous: in Italy we isolated 28 aEPEC but no tEPEC, while in Angola and Mozambique the percentage of the two subgroups was comparable. Twelve atypical EPEC were FAS positive and able to induce localized-like adherence on Hep-2 cells, but no correlation with the geographic origin of isolates was observed.
Conclusion: Atypical EPEC are present in sub-Saharan areas in a percentage similar to that of typical strains, and are not mainly restricted to industrialized countries, as it was previously supposed.</br
Biological activities of essential oil extracted from leaves of Atalantia sessiflora Guillauminin Vietnam
Introduction: The present study aimed to determine the chemical compositions and bioactivities of the essential oil of Atalantia sessifloraGuillaumin (A. sessiflora), including antibacterial, antimycotic, antitrichomonas, anti-inflammatory and antiviral effects. Methodology: The essential oil from leaves of A. sessiflora was extracted by hydrodistillation using a Clevenger apparatus. Chemical compositions of oil were identified by GC/MS. Antimicrobial and antitrichomonas activity were determined by the microdilution method; anti-inflammatory and antiviral were determined by the MTT method. Results: The average yield of oil was 0.46 ± 0.01% (v/w, dry leaves). A number of 45 constituents were identified by GC/MS. The essential oil comprised four main components. The oil showed antimicrobial activities against Gram-positive strains as Staphylococcus; Gram-negative bacteria such as Klebsiella pneumoniae and Escherichia coli; and finally four Candidaspecies. Enterococcus faecalis and Pseudomonas aeruginosawere least susceptible to the oil of A. sessiflora, as seen in their MIC and MLC values over 16% (v/v). Activity against Trichomonas vaginalis was also undertaken, showing IC50, IC90 and MLC values of 0.016, 0.03 and 0.06% (v/v) respectively, after 48 hours of incubation. The oil of A. sessiflora displayed activity against the nitric oxide generation with the IC50 of 95.94 ± 6.18 μg/mL. The oil was completely ineffective against tested viruses, ssRNA+, ssRNA-, dsRNA, and dsDNA viruses. Conclusions: This is the first yet comprehensive scientific report about the chemical compositions and pharmacological properties of the essential oil of A. sessiflora. Further studies should be done to evaluate the safety and toxicity of A. sessiflora oil
Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation
Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments
Do anti-<i>Tricomonas vaginalis</i> antibodies recognize HIV gp41?
The serological diagnosis of HIV infection is usually made on the basis of the detection of circulating antibodies specific for viral antigens gp41, gp120 and gp160. Despite using recombinant immunogenic oligopeptides, which improved the sensitivity and specificity of immunological tests, a number of both false-positive and false-negative reactions have been reported. Although the emergence of new viral serotypes or recent infection could be responsible, at least partly, for the low sensitivity of serological assays in detecting early antibody responses, false-positive results could be explained by crossreactions with unrelated antigens. Spehar and Strand recently demonstrated the crossreactivity of anti-gp41 murine monoclonal antibodies with the human cytoskeletal protein alpha-actinin, and antibodies reacting with both the immunodominant region of HIV gp41 and alpha-actinin have been found in the sera of HIV-infected individuals
The Flagellated parasite <i>Trichomonas vaginalis</i>: new insights into cytopathogenicity mechanisms
Our knowledge concerning cytopathogenicity of Trichomonas vaginalis has been enriched in the past by numerous findings. In this paper, we review the latest advances in the field and discuss the different mechanisms and molecules responsible for the parasite's virulence
Host and Tissue Specificity of Trichomonas vaginalis Is Not Mediated by Its Known Adhesion Proteins
Adhesion of Trichomonas vaginalis is believed to be dependent on four adhesion proteins, which are thought to bind to vaginal epithelial cells in a specific manner with a ligand-receptor type of interaction. However, the specific receptors on the host cell have not yet been identified. In this work, the ability of the T. vaginalis adhesins to bind to cells of different histologic derivations and from different species has been studied. HeLa, CHO, and Vero cell lines; erythrocytes from different species; and a prokaryote without a cell wall, Mycoplasma hominis, were employed in order to investigate the cell specificity of the T. vaginalis adhesins. We observed that the T. vaginalis adhesins are able to bind to the different cell types to the same extent, suggesting that the host and tissue specificity of T. vaginalis adhesion should not be due to specificity of the parasite adhesins. Our results suggest that the data published to date on the subject are probably artifactual and that the experiments reported in the literature are not appropriate for identification of protozoan adhesins
- …