148 research outputs found
Spectral and polarimetric characterization of the Gas Pixel Detector filled with dimethyl ether
The Gas Pixel Detector belongs to the very limited class of gas detectors
optimized for the measurement of X-ray polarization in the emission of
astrophysical sources. The choice of the mixture in which X-ray photons are
absorbed and photoelectrons propagate, deeply affects both the energy range of
the instrument and its performance in terms of gain, track dimension and
ultimately, polarimetric sensitivity. Here we present the characterization of
the Gas Pixel Detector with a 1 cm thick cell filled with dimethyl ether (DME)
at 0.79 atm, selected among other mixtures for the very low diffusion
coefficient. Almost completely polarized and monochromatic photons were
produced at the calibration facility built at INAF/IASF-Rome exploiting Bragg
diffraction at nearly 45 degrees. For the first time ever, we measured the
modulation factor and the spectral capabilities of the instrument at energies
as low as 2.0 keV, but also at 2.6 keV, 3.7 keV, 4.0 keV, 5.2 keV and 7.8 keV.
These measurements cover almost completely the energy range of the instrument
and allows to compare the sensitivity achieved with that of the standard
mixture, composed of helium and DME.Comment: 20 pages, 11 figures, 5 tables. Accepted for publication by NIM
A Measurement of Photon Production in Electron Avalanches in CF4
This paper presents a measurement of the ratio of photon to electron
production and the scintillation spectrum in a popular gas for time pro jection
chambers, carbon tetrafluoride (CF4), over the range of 200 to 800 nm; the
ratio is measured to be 0.34+/-0.04. This result is of particular importance
for a new generation of dark matter time projection chambers with directional
sensitivity which use CF4 as a fill gas.Comment: 19 pages, including appendix. 8 figure
Sub MeV Particles Detection and Identification in the MUNU detector ((1)ISN, IN2P3/CNRS-UJF, Grenoble, France, (2)Institut de Physique, Neuch\^atel, Switzerland, (3) INFN, Padova Italy, (4) Physik-Institut, Z\"{u}rich, Switzerland)
We report on the performance of a 1 m TPC filled with CF at 3
bar, immersed in liquid scintillator and viewed by photomultipliers. Particle
detection, event identification and localization achieved by measuring both the
current signal and the scintillation light are presented. Particular features
of particle detection are also discussed. Finally, the Mn
photopeak, reconstructed from the Compton scattering and recoil angle is shown.Comment: Latex, 19 pages, 20 figure
Charge amplification concepts for direction-sensitive dark matter detectors
Direction measurement of weakly interacting massive particles in
time-projection chambers can provide definite evidence of their existence and
help to determine their properties. This article demonstrates several concepts
for charge amplification in time-projection chambers that can be used in
direction-sensitive dark matter search experiments. We demonstrate
reconstruction of the 'head-tail' effect for nuclear recoils above 100keV, and
discuss the detector performance in the context of dark matter detection and
scaling to large detector volumes.Comment: 15 pages, 9 figure
Interferon-α resistance in renal carcinoma cells is associated with defective induction of signal transducer and activator of transcription 1 which can be restored by a supernatant of phorbol 12-myristate 13-acetate stimulated peripheral blood mononuclear cells
Therapy of selected human malignancies with interferon-α is widely accepted but often complicated by the emergence of interferon-α resistance. Interferon is a pleiotropic cytokine with antiproliferative, antitumour, antiviral and immunmodulatory effect; it signals through the Jak-STAT signal transduction pathway where signal transducer and activator of transcription 1 plays an important role. Here we report both, a lack of signal transducer and activator of transcription induction in interferon-α resistant renal cell carcinoma cells and signal transducer and activator of transcription 1 reinduction of phorbol 12-myristate 13-acetate-stimulated peripheral blood mononuclear cells supernatant. Preliminary experiments on the identification of the molecules that reinducing signal transducers and activators of transcription 1 indicate that interferon-γ may be the responsible candidate cytokine, but several others may be involved as well. This work provides the basis for therapeutic strategies directed at the molecular modulation of interferon-α resistance in human neoplasms
Incongruence in number–luminance congruency effects
Congruency tasks have provided support for an amodal magnitude system for magnitudes that have a “spatial” character, but conflicting results have been obtained for magnitudes that do not (e.g., luminance). In this study, we extricated the factors that underlie these number–luminance congruency effects and tested alternative explanations: (unsigned) luminance contrast and saliency. When luminance had to be compared under specific task conditions, we revealed, for the first time, a true influence of number on luminance judgments: Darker stimuli were consistently associated with numerically larger stimuli. However, when number had to be compared, luminance contrast, not luminance, influenced number judgments. Apparently, associations exist between number and luminance, as well as luminance contrast, of which the latter is probably stronger. Therefore, similar tasks, comprising exactly the same stimuli, can lead to distinct interference effects
Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells
<p>Abstract</p> <p>Background</p> <p>Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells.</p> <p>Methods</p> <p>Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR.</p> <p>Results</p> <p>SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation.</p> <p>Conclusions</p> <p>These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ.</p
- …