166 research outputs found

    Potential and limitations of nucleon transfer experiments with radioactive beams at REX-ISOLDE

    Get PDF
    As a tool for studying the structure of nuclei far off stability the technique of gamma-ray spectroscopy after low-energy single-nucleon transfer reactions with radioactive nuclear beams in inverse kinematics was investigated. Modules of the MINIBALL germanium array and a thin position-sensitive parallel plate avalanche counter (PPAC) to be employed in future experiments at REX-ISOLDE were used in a test experiment performed with a stable 36S beam on deuteron and 9Be targets. It is demonstrated that the Doppler broadening of gamma lines detected by the MINIBALL modules is considerably reduced by exploiting their segmentation, and that for beam intensities up to 10^6 particles/s the PPAC positioned around zero degrees with respect to the beam axis allows not only to significantly reduce the gamma background by requiring coincidences with the transfer products but also to control the beam and its intensity by single particle counting. The predicted large neutron pickup cross sections of neutron-rich light nuclei on 2H and 9Be targets at REX-ISOLDE energies of 2.2 MeV A are confirmed.Comment: 11 pages, 8 figure

    Design of Novel Relaxase Substrates Based on Rolling Circle Replicases for Bioconjugation to DNA Nanostructures

    Get PDF
    During bacterial conjugation and rolling circle replication, HUH endonucleases, respectively known as relaxases and replicases, form a covalent bond with ssDNA when they cleave their target sequence (nic site). Both protein families show structural similarity but limited amino acid identity. Moreover, the organization of the inverted repeat (IR) and the loop that shape the nic site differs in both proteins. Arguably, replicases cleave their target site more efficiently, while relaxases exert more biochemical control over the process. Here we show that engineering a relaxase target by mimicking the replicase target, results in enhanced formation of protein-DNA covalent complexes. Three widely different relaxases, which belong to MOBF, MOBQ and MOBP families, can properly cleave DNA sequences with permuted target sequences. Collaterally, the secondary structure that the permuted targets acquired within a supercoiled plasmid DNA resulted in poor conjugation frequencies underlying the importance of relaxase accessory proteins in conjugative DNA processing. Our results reveal that relaxase and replicase targets can be interchangeable in vitro. The new Rep substrates provide new bioconjugation tools for the design of sophisticated DNA-protein nanostructures.This work was financed by grants BFU2014-55534-C2-1-P from the Spanish Ministry of Economy and Competitiveness and 612146/FP7-ICT- 2013 and 282004/FP7-HEALTH.2011.2.3.1-2 from the European Union Seventh Framework Programme to FC and grant BFU2014-55534-C2-2-P from the Spanish Ministry of Economy and Competitiveness to GM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Investigating the basis of substrate recognition in the pC221 relaxosome

    Get PDF
    The nicking of the origin of transfer (oriT) is an essential initial step in the conjugative mobilization of plasmid DNA. In the case of staphylococcal plasmid pC221, nicking by the plasmid-specific MobA relaxase is facilitated by the DNA-binding accessory protein MobC; however, the role of MobC in this process is currently unknown. In this study, the site of MobC binding was determined by DNase I footprinting. MobC interacts with oriT DNA at two directly repeated 9 bp sequences, mcb1 and mcb2, upstream of the oriT nic site, and additionally at a third, degenerate repeat within the mobC gene, mcb3. The binding activity of the conserved sequences was confirmed indirectly by competitive electrophoretic mobility shift assays and directly by Surface Plasmon Resonance studies. Mutation at mcb2 abolished detectable nicking activity, suggesting that binding of this site by MobC is a prerequisite for nicking by MobA. Sequential site-directed mutagenesis of each binding site in pC221 has demonstrated that all three are required for mobilization. The MobA relaxase, while unable to bind to oriT DNA alone, was found to associate with a MobC–oriT complex and alter the MobC binding profile in a region between mcb2 and the nic site. Mutagenesis of oriT in this region defines a 7 bp sequence, sra, which was essential for nicking by MobA. Exchange of four divergent bases between the sra of pC221 and the related plasmid pC223 was sufficient to swap their substrate identity in a MobA-specific nicking assay. Based on these observations we propose a model of layered specificity in the assembly of pC221-family relaxosomes, whereby a common MobC:mcb complex presents the oriT substrate, which is then nicked only by the cognate MobA

    Backbending region study in 160,162Dy using incomplete fusion reactions

    Get PDF
    18 págs.; 17 figs.; 3 tabs. ; PACS number(s): 23.20.Lv, 23.20.En, 27.70.1q, 21.60.CsThe incomplete fusion reactions 7Li→158,160Gd at beam energies of 8 MeV/nucleon have been used to study the first band crossing region in the heavy stable Dy isotopes 160,162Dy. The γ rays were detected in the GASP spectrometer in coincidence with fast charged particles detected in the ISIS silicon ball. We succeeded to observe the first backbending in 162Dy at a crossing frequency of ℏ ω ≈ 350 keV, a value much higher than expected from other nuclei in this mass region. Moreover, for the first time in a nucleus with a very large interaction strength, the yrare band in 160Dy could be established up to rather high spin (I= 20ℏ) allowing for a precise determination of the interaction strength between the ground state and the Stockholm band, |Vg-S| = 219(2) keV. Together with |Vg-S| = 14(2) kev determined for the corresponding interaction in 162Dy, a full oscillation of the strengths from one node to the next could be observed within an isotopic chain. In addition to the ground state and Stockholm bands, many other known bands in the two nuclei were considerably extended to higher spin and the experimental results are compared to calculations within the projected shell model. ©2002 The American Physical SocietyThis work has been supported by Deutsches Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF). A.J. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG).Peer Reviewe

    Excited bands and signature dependent electromagnetic decay properties in neutron-rich 159,161,163Dy

    Get PDF
    14 págs.; 12 figs.; 3 tabs. ; PACS number(s): 23.20.Lv, 27.70.1q, 21.10.ReHigh-spin states of the neutron-rich odd nuclei 159,161,163Dy have been studied using the incomplete fusion reactions 158,160Gd(7Li,(p,d,t)xn). In 159Dy, the band crossing in the 11/2-[505] band has been observed for the first time. Moreover, 11 E1 transitions connecting both signatures of the 3/2-[521] band to the 5/2+[642] band have been observed in this nucleus; the deduced B(E1)/B(E2) ratios as well as the B(M1)/B(E2) ratios for transitions within the 3/2-[521] band show a pronounced signature dependence. In 161Dy and 163Dy, rotational bands have been extended to significantly higher spin values. In 161Dy, the sequences built on the neutron 5/2-[523] and 3/2-[521] states have been followed up to spin 49/2- and 33/2-, respectively, and in both cases upbends have been observed around hℏ ω ≈0.26 MeV. In addition, a new band most probably built on the 11/2-[505] single-particle state has been identified in this isotope. In 163Dy, both the 5/2-[523] ground state band and the structure built on the 5/2+[642] neutron orbit have been extended up to the 45/2- and 49/2+ states, respectively. However, no band crossing has been observed in this nucleus. The properties of the observed bands in 159,161,163Dy are discussed and compared to calculations performed within the projected shell model. ©2003 The American Physical SocietyThis work was supported by the Deutsches Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF). A.J. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) within the Heisenberg program.Peer Reviewe

    Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein

    Full text link
    The Enterococcus faecalis conjugative plasmids pAD1 and pAM373 encode a mating response to the peptide sex pheromones cAD1 and cAM373 respectively. Sequence determination of both plasmids has recently been completed with strong similarity evident over many of the structural genes related to conjugation. pAD1 has two origins of transfer, with oriT1 being located within the repA determinant, whereas the more efficiently utilized oriT2 is located between orf53 and orf57 , two genes found in the present study to be essential for conjugation. We have found a similarly located oriT to be present in pAM373. oriT2 corresponds to about 285 bp based on its ability to facilitate mobilization by pAD1 when ligated to the shuttle vector pAM401; however, it was not mobilized by pAM373. In contrast, a similarly ligated fragment containing the oriT of pAM373 did not facilitate mobilization by pAD1 but was efficiently mobilized by pAM373. The oriT sites of the two plasmids each contained a homologous large inverted repeat (spanning about 140 bp) adjacent to a series of non-homologous short (6 bp) direct repeats. A hybrid construction containing the inverted repeat of pAM373 and direct repeats of pAD1 was mobilized efficiently by pAD1 but not by pAM373, indicating a significantly greater degree of specificity is associated with the direct repeats. Mutational (deletion) analyses of the pAD1 oriT2 inverted repeat structure suggested its importance in facilitating transfer or perhaps ligation of the ends of the newly transferred DNA strand. Analyses showed that Orf57 (to be called TraX) is the relaxase, which was found to induce a specific nick in the large inverted repeat inside oriT ; the protein also facilitated site-specific recombination between two oriT2 sites. Orf53 (to be called TraW) exhibits certain structural similarities to TraG-like proteins, although there is little overall homology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72536/1/j.1365-2958.2002.03007.x.pd

    Characterization of the Partitioning System of Myxococcus Plasmid pMF1

    Get PDF
    pMF1 is the only autonomously replicating plasmid that has been recently identified in myxobacteria. This study characterized the partitioning (par) system of this plasmid. The fragment that significantly increased the retaining stability of plasmids in Myxococcus cells in the absence of selective antibiotics contained three open reading frames (ORFs) pMF1.21-pMF1.23 (parCAB). The pMF1.22 ORF (parA) is homologous to members of the parA ATPase family, with the highest similarity (56%) to the Sphingobium japonicum ParA-like protein, while the other two ORFs had no homologs in GenBank. DNase I footprinting and electrophoretic mobility shift assays showed that the pMF1.23 (parB) product is a DNA-binding protein of iteron DNA sequences, while the product of pMF1.21 (parC) has no binding activity but is able to enhance the DNA-binding activity of ParB to iterons. The ParB protein autogenously repressed the expression of the par genes, consistent with the type Ib par pattern, while the ParC protein has less repressive activity. The ParB-binding iteron sequences are distributed not only near the partitioning gene loci but also along pMF1. These results indicate that the pMF1 par system has novel structural and functional characteristics

    Genomics of high molecular weight plasmids isolated from an on-farm biopurification system

    Get PDF
    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.Acknowledgements: This work was supported by the European Commission’s 7th Framework Programme (project Metaexplore 222625), the National Scientific and Technical Research Council of Argentina (Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET, Argentina) and Ministry of Science Technology and Productive Innovation (Ministerio de Ciencia Tecnolología e Innovación Productiva—MinCyT, Argentina), projects PICT2013-0113, PICT2012-518 and PICT 2012-1719). MCM, FJA were supported by fellowships from CONICET. MFDP, MP, ML, GTT and AL are researchers at CONICET. The bioinformatics support of the BMBF-funded project (grant 031A533) within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged. Work in FdlC group was supported by grant “Plasmid Offensive” BFU2014-55534-C2-1-P from Ministerio de Economía y Competitividad (MINECO, Spain), and Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015/0019) from Instituto de Salud Carlos III (Spain)-co-financed by European Development Regional Fund. The authors are grateful to Paula Giménez and Silvana Tongiani for excellent technical assistance

    Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria—mini review

    Get PDF
    The advantages of phage Mu transposition-based systems for the chromosomal editing of plasmid-less strains are reviewed. The cis and trans requirements for Mu phage-mediated transposition, which include the L/R ends of the Mu DNA, the transposition factors MuA and MuB, and the cis/trans functioning of the E element as an enhancer, are presented. Mini-Mu(LR)/(LER) units are Mu derivatives that lack most of the Mu genes but contain the L/R ends or a properly arranged E element in cis to the L/R ends. The dual-component system, which consists of an integrative plasmid with a mini-Mu and an easily eliminated helper plasmid encoding inducible transposition factors, is described in detail as a tool for the integration/amplification of recombinant DNAs. This chromosomal editing method is based on replicative transposition through the formation of a cointegrate that can be resolved in a recombination-dependent manner. (E-plus)- or (E-minus)-helpers that differ in the presence of the trans-acting E element are used to achieve the proper mini-Mu transposition intensity. The systems that have been developed for the construction of stably maintained mini-Mu multi-integrant strains of Escherichia coli and Methylophilus methylotrophus are described. A novel integration/amplification/fixation strategy is proposed for consecutive independent replicative transpositions of different mini-Mu(LER) units with “excisable” E elements in methylotrophic cells

    Structural studies of T4S systems by electron microscopy

    Get PDF
    Abstract: Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNA and/or proteins through the membranes of bacteria. Analysis of T4S system architecture is an extremely challenging task taking into account their multi protein organisation and lack of overall global symmetry. Nonetheless the last decade demonstrated an amazing progress achieved by X-ray crystallography and cryo-electron microscopy. In this review we present a structural analysis of this dynamic complex based on recent advances in biochemical, biophysical and structural studies
    corecore