14 research outputs found

    Telomeres and telomerase in head and neck squamous cell carcinoma: from pathogenesis to clinical implications

    Full text link

    A La protein requirement for efficient pre-tRNA folding

    No full text
    The La protein protects the 3′ ends of many nascent small RNAs from exonucleases. Here we report that La is required for efficient folding of certain pre-tRNAs. A mutation in pre-tRNA(Arg)(CCG) causes yeast cells to be cold-sensitive and to require the La protein Lhp1p for efficient growth. When the mutant cells are grown at low temperature, or when Lhp1p is depleted, mature tRNA(Arg)(CCG) is not efficiently aminoacylated. The mutation causes the anticodon stem of pre-tRNA(Arg)(CCG) to misfold into an alternative helix in vitro. Intragenic suppressor mutations that disrupt the misfolded helix or strengthen the correct helix alleviate the requirement for Lhp1p, providing evidence that the anticodon stem misfolds in vivo. Chemical and enzymatic footprinting experiments suggest a model in which Lhp1p stabilizes the correctly folded stem. Lhp1p is also required for efficient aminoacylation of two wild-type tRNAs when yeast are grown at low temperature. These experiments reveal that pre-tRNAs can require protein assistance for efficient folding in vivo

    Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties

    No full text
    The Wnt pathway is integrally involved in regulating self-renewal, proliferation, and maintenance of cancer stem cells (CSCs). We explored the effect of the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), in modulating epithelial to mesenchymal transition (EMT) in CSCs from human glioblastoma cells lines, U87 and U373. sFRP4 chemo-sensitized CSC-enriched cells to the most commonly used anti-glioblastoma drug, temozolomide (TMZ), by the reversal of EMT. Cell movement, colony formation, and invasion in vitro were suppressed by sFRP4+TMZ treatment, which correlated with the switch of expression of markers from mesenchymal (Twist, Snail, N-cadherin) to epithelial (E-cadherin). sFRP4 treatment elicited activation of the +2 pathway, which antagonizes the Wnt/Ăź-catenin pathway. Significantly, the chemo-sensitization effect of sFRP4 was correlated with the reduction in the expression of drug resistance markers ABCG2, ABCC2, and ABCC4. The efficacy of sFRP4+TMZ treatment was demonstrated in vivo using nude mice, which showed minimum tumor engraftment using CSCs pretreated with sFRP4+TMZ. These studies indicate that sFRP4 treatment would help to improve response to commonly used chemotherapeutics in gliomas by modulating EMT via the Wnt/Ăź-catenin pathway. These findings could be exploited for designing better targeted strategies to improve chemo-response and eventually eliminate glioblastoma CSCs

    The Role of RNA-Binding Proteins in IRES-Dependent Translation

    No full text
    corecore