26 research outputs found

    PloS one

    Get PDF
    In eukaryotes the TFIID complex is required for preinitiation complex assembly which positions RNA polymerase II around transcription start sites. On the other hand, histone acetyltransferase complexes including SAGA and ATAC, modulate transcription at several steps through modification of specific core histone residues. In this study we investigated the function of Drosophila melanogaster proteins TAF10 and TAF10b, which are subunits of dTFIID and dSAGA, respectively. We generated a mutation which eliminated the production of both Drosophila TAF10 orthologues. The simultaneous deletion of both dTaf10 genes impaired the recruitment of the dTFIID subunit dTAF5 to polytene chromosomes, while binding of other TFIID subunits, dTAF1 and RNAPII was not affected. The lack of both dTAF10 proteins resulted in failures in the larval-pupal transition during metamorphosis and in transcriptional reprogramming at this developmental stage. Surprisingly, unlike dSAGA mutations, dATAC subunit mutations resulted in very similar changes in the steady state mRNA levels of approximately 5000 genes as did ablation of both dTaf10 genes, indicating that dTAF10- and/or dTAF10b-containing complexes and dATAC affect similar pathways. Importantly, the phenotype resulting from dTaf10+dTaf10b mutation could be rescued by ectopically added ecdysone, suggesting that dTAF10- and/or dTAF10b-containing complexes are involved in the expression of ecdysone biosynthetic genes. Indeed, in dTaf10+dTaf10b mutants, cytochrome genes, which regulate ecdysone synthesis in the ring gland, were underrepresented. Therefore our data support the idea that the presence of dTAF10 proteins in dTFIID and/or dSAGA is required only at specific developmental steps. We propose that distinct forms of dTFIID and/or dSAGA exist during Drosophila metamorphosis, wherein different TAF compositions serve to target RNAPII at different developmental stages and tissues

    Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow derived mesenchymal stem cells (MSCs) are promising candidates for cell based therapies in myocardial infarction. However, the exact underlying cellular mechanisms are still not fully understood. Our aim was to explore the possible role of direct cell-to-cell interaction between ischemic H9c2 cardiomyoblasts and normal MSCs. Using an in vitro ischemia model of 150 minutes of oxygen glucose deprivation we investigated cell viability and cell interactions with confocal microscopy and flow cytometry.</p> <p>Results</p> <p>Our model revealed that adding normal MSCs to the ischemic cell population significantly decreased the ratio of dead H9c2 cells (H9c2 only: 0.85 ± 0.086 vs. H9c2+MSCs: 0.16 ± 0.035). This effect was dependent on direct cell-to-cell contact since co-cultivation with MSCs cultured in cell inserts did not exert the same beneficial effect (ratio of dead H9c2 cells: 0.90 ± 0.055). Confocal microscopy revealed that cardiomyoblasts and MSCs frequently formed 200-500 nm wide intercellular connections and cell fusion rarely occurred between these cells.</p> <p>Conclusion</p> <p>Based on these results we hypothesize that mesenchymal stem cells may reduce the number of dead cardiomyoblasts after ischemic damage via direct cell-to-cell interactions and intercellular tubular connections may play an important role in these processes.</p

    Melanoma-Derived Exosomes Induce PD-1 Overexpression and Tumor Progression via Mesenchymal Stem Cell Oncogenic Reprogramming

    Get PDF
    Recently, it has been described that programmed cell death protein 1 (PD-1) overexpressing melanoma cells are highly aggressive. However, until now it has not been defined which factors lead to the generation of PD-1 overexpressing subpopulations. Here, we present that melanoma-derived exosomes, conveying oncogenic molecular reprogramming, induce the formation of a melanoma-like, PD-1 overexpressing cell population (mMSCPD-1+) from naïve mesenchymal stem cells (MSCs). Exosomes and mMSCPD-1+ cells induce tumor progression and expression of oncogenic factors in vivo. Finally, we revealed a characteristic, tumorigenic signaling network combining the upregulated molecules (e.g., PD-1, MET, RAF1, BCL2, MTOR) and their upstream exosomal regulating proteins and miRNAs. Our study highlights the complexity of exosomal communication during tumor progression and contributes to the detailed understanding of metastatic processes

    Fluid challenges in intensive care: the FENICE study A global inception cohort study

    Get PDF
    Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account

    Genes of the Ecdysone Biosynthesis Pathway Are Regulated by the dATAC Histone Acetyltransferase Complex in Drosophila▿

    Get PDF
    Uncovering mechanisms that regulate ecdysone production is an important step toward understanding the regulation of insect metamorphosis and processes in steroid-related pathologies. We report here the transcriptome analysis of Drosophila melanogaster dAda2a and dAda3 mutants, in which subunits of the ATAC acetyltransferase complex are affected. In agreement with the fact that these mutations lead to lethality at the start of metamorphosis, both the ecdysone levels and the ecdysone receptor binding to polytene chromosomes are reduced in these flies. The cytochrome genes (spookier, phantom, disembodied, and shadow) involved in steroid conversion in the ring gland are downregulated, while the gene shade, which is involved in converting ecdysone into its active form in the periphery, is upregulated in these dATAC subunit mutants. Moreover, driven expression of dAda3 at the site of ecdysone synthesis partially rescues dAda3 mutants. Mutants of dAda2b, a subunit of the dSAGA histone acetyltransferase complex, do not share phenotype characteristics and RNA profile alterations with dAda2a mutants, indicating that the ecdysone biosynthesis genes are regulated by dATAC, but not by dSAGA. Thus, we provide one of the first examples of the coordinated regulation of a functionally linked set of genes by the metazoan-specific ATAC complex

    Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response

    No full text
    SRC-3 is an important coactivator of nuclear receptors including the retinoic acid (RA) receptor α. Most of SRC-3 functions are facilitated by changes in the posttranslational code of the protein that involves mainly phosphorylation and ubiquitination. We recently reported that SRC-3 is degraded by the proteasome in response to RA. Here, by using an RNAi E3-ubiquitin ligase entry screen, we identified CUL-3 and RBX1 as components of the E3 ubiquitin ligase involved in the RA-induced ubiquitination and subsequent degradation of SRC-3. We also show that the RA-induced ubiquitination of SRC-3 depends on its prior phosphorylation at serine 860 that promotes binding of the CUL-3–based E3 ligase in the nucleus. Finally, phosphorylation, ubiquitination, and degradation of SRC-3 cooperate to control the dynamics of transcription. In all, this process participates to the antiproliferative effect of RA

    Activation of Poly(ADP-Ribose) Polymerase by Myocardial Ischemia and Coronary Reperfusion in Human Circulating Leukocytes

    No full text
    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2′-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI
    corecore