222 research outputs found

    Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2

    Get PDF
    AbstractVaccination with papillomavirus L2 has been shown to induce neutralizing antibodies that protect against homologous type infection and cross-neutralize a limited number of genital HPVs. Surprisingly, we found that antibodies to bovine papillomavirus (BPV1) L2 amino acids 1–88 induced similar titers of neutralizing antibodies against Human papillomavirus (HPV)16 and 18 and BPV1 pseudoviruses and also neutralized HPV11 native virions. These antibodies also neutralized each of the other pseudovirus types tested, HPV31, HPV6 and Cottontail rabbit papillomavirus (CRPV) pseudoviruses, albeit with lower titers. HPV16, HPV18, HPV31, HPV6 and CRPV L2 anti-sera also displayed some cross-neutralization, but the titers were lower and did not encompass all pseudoviruses tested. This study demonstrates the presence of broadly cross-neutralizing epitopes at the N-terminus of L2 that are shared by cutaneous and mucosal types and by types that infect divergent species. BPV1 L2 was exceptionally effective at inducing cross-neutralizing antibodies to these shared epitopes

    Some No-go Theorems for String Duals of Non-relativistic Lifshitz-like Theories

    Full text link
    We study possibilities of string theory embeddings of the gravity duals for non-relativistic Lifshitz-like theories with anisotropic scale invariance. We search classical solutions in type IIA and eleven-dimensional supergravities which are expected to be dual to (2+1)-dimensional Lifshitz-like theories. Under reasonable ansaetze, we prove that such gravity duals in the supergravities are not possible. We also discuss a possible physical reason behind this.Comment: 18 pages, Latex, flux conditions clarified (v2), brief summary of results added (v3

    Influence of Yb:YAG laser beam parameters on Haynes 188 weld fusion zone microstructure and mechanical properties

    Get PDF
    The weldability of 1.2 mm thick Haynes 188 alloy sheets by a disk Yb:YAG laser welding was examined. Butt joints were made, and the influence of parameters such as power, size, and shape of the spot, welding speed, and gas flow has been investigated. Based on an iconographic correlation approach, optimum process parameters were determined. Depending on the distribution of the power density (circular or annular), acceptable welds were obtained. Powers greater than 1700 W, welding speeds higher than 3.8 m mm1, and spot sizes between 160 and 320 lm were needed in the circular (small fiber) configuration. By comparison, the annular (large fiber) configuration required a power as high as 2500 W, and a welding speed less than 3.8 m min�1. The mechanical properties of the welds depended on their shape and microstructure, which in turn depended on the welding conditions. The content of carbides, the proportion of areas consisting of cellular and dendritic substructures, and the size of these substructures were used to explain the welded joint mechanical properties

    Effect of the addition of different waste carbonaceous materials on coal gasification in CO2 atmosphere

    Get PDF
    YesIn order to evaluate the feasibility of using CO2 as a gasifying agent in the conversion of carbonaceous materials to syngas, gasification characteristics of coal, a suite of waste carbonaceous materials, and their blends were studied by using a thermogravimetric analyser (TGA). The results showed that CO2 gasification of polystyrene completed at 470 °C, which was lower than those of other carbonaceous materials. This behaviour was attributed to the high volatile content coupled with its unique thermal degradation properties. It was found that the initial decomposition temperature of blends decreased with the increasing amount of waste carbonaceous materials in the blends. In this study, results demonstrated that CO2 co-gasification process was enhanced as a direct consequence of interactions between coal and carbonaceous materials in the blends. The intensity and temperature of occurrence of these interactions were influenced by the chemical properties and composition of the carbonaceous materials in the blends. The strongest interactions were observed in coal/polystyrene blend at the devolatilisation stage as indicated by the highest value of Root Mean Square Interaction Index (RMSII), which was due to the highly reactive nature of polystyrene. On the other hand, coal/oat straw blend showed the highest interactions at char gasification stage. The catalytic effect of alkali metals and other minerals in oat straw, such as CaO, K2O, and Fe2O3, contributed to these strong interactions. The overall CO2 gasification of coal was enhanced via the addition of polystyrene and oat straw

    Turn-turn short circuit fault management in permanent magnet machines

    Get PDF
    This paper presents a systematic study on turn-turn short circuit fault and ways to manage them to provide a basis for comparison of the various options available. The possible methods to reduce the likelihood of the winding SC fault and the fault mitigation techniques related to such faults are discussed. A Finite Element (FE) analysis of a surface-mount Permanent Magnet (PM) machine under application of different mitigation techniques during a turn-turn fault is presented. Both machine and drive structural adaptations for different fault mitigation techniques are addressed. Amongst the investigated fault mitigation techniques, the most promising solution is identified and validated experimentally. It is shown that the shorting terminal method adopting vertical winding arrangement is an effective method in terms of the implementation, reliability and weight

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≥ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions
    corecore