9,177 research outputs found
A Hybrid Quantum Encoding Algorithm of Vector Quantization for Image Compression
Many classical encoding algorithms of Vector Quantization (VQ) of image
compression that can obtain global optimal solution have computational
complexity O(N). A pure quantum VQ encoding algorithm with probability of
success near 100% has been proposed, that performs operations 45sqrt(N) times
approximately. In this paper, a hybrid quantum VQ encoding algorithm between
classical method and quantum algorithm is presented. The number of its
operations is less than sqrt(N) for most images, and it is more efficient than
the pure quantum algorithm.
Key Words: Vector Quantization, Grover's Algorithm, Image Compression,
Quantum AlgorithmComment: Modify on June 21. 10pages, 3 figure
Quantum integrable system with two color components in two dimensions
The Davey-Stewartson 1(DS1) system[9] is an integrable model in two
dimensions. A quantum DS1 system with 2 colour-components in two dimensions has
been formulated. This two-dimensional problem has been reduced to two
one-dimensional many-body problems with 2 colour-components. The solutions of
the two-dimensional problem under consideration has been constructed from the
resulting problems in one dimensions. For latters with the -function
interactions and being solved by the Bethe ansatz, we introduce symmetrical and
antisymmetrical Young operators of the permutation group and obtain the exact
solutions for the quantum DS1 system. The application of the solusions is
discussed.Comment: 14 pages, LaTeX fil
Superconducting and normal-state interlayer-exchange-coupling in LaSrMnO-YBaCuO_{0.67}_{0.33}{3}$ epitaxial trilayers
The issue of interlayer exchange coupling in magnetic multilayers with
superconducting (SC) spacer is addressed in LaSrMnO
(LSMO) - YBaCuO (YBCO) - LaSrMnO
(LSMO) epitaxial trilayers through resistivity, ac-susceptibility and
magnetization measurements. The ferromagnetic (FM) LSMO layers possessing
in-plane magnetization suppress the critical temperature (T of the
c-axis oriented YBCO thin film spacer. The superconducting order, however,
survives even in very thin layers (thickness d 50 {\AA}, 4
unit cells) at T 25 K. A predominantly antiferromagnetic (AF) exchange
coupling between the moments of the LSMO layers at fields 200 Oe is seen in
the normal as well as the superconducting states of the YBCO spacer. The
exchange energy J ( 0.08 erg/cm at 150 K for d = 75
{\AA}) grows on cooling down to T, followed by truncation of this growth
on entering the superconducting state. The coupling energy J at a fixed
temperature drops exponentially with the thickness of the YBCO layer. The
temperature and d dependencies of this primarily non-oscillatory J
are consistent with the coupling theories for systems in which transport is
controlled by tunneling. The truncation of the monotonic T dependence of
J below T suggests inhibition of single electron tunneling across
the CuO planes as the in-plane gap parameter acquires a non-zero value.Comment: Accepted for publication in Phys. Rev.
Classification of smoke contaminated Cabernet Sauvignon berries and leaves based on chemical fingerprinting and machine learning algorithms
Wildfires are an increasing problem worldwide, with their number and intensity predicted to rise due to climate change. When fires occur close to vineyards, this can result in grapevine smoke contamination and, subsequently, the development of smoke taint in wine. Currently, there are no in-field detection systems that growers can use to assess whether their grapevines have been contaminated by smoke. This study evaluated the use of near-infrared (NIR) spectroscopy as a chemical fingerprinting tool, coupled with machine learning, to create a rapid, non-destructive in-field detection system for assessing grapevine smoke contamination. Two artificial neural network models were developed using grapevine leaf spectra (Model 1) and grape spectra (Model 2) as inputs, and smoke treatments as targets. Both models displayed high overall accuracies in classifying the spectral readings according to the smoking treatments (Model 1: 98.00%; Model 2: 97.40%). Ultraviolet to visible spectroscopy was also used to assess the physiological performance and senescence of leaves, and the degree of ripening and anthocyanin content of grapes. The results showed that chemical fingerprinting and machine learning might offer a rapid, in-field detection system for grapevine smoke contamination that will enable growers to make timely decisions following a bushfire event, e.g., avoiding harvest of heavily contaminated grapes for winemaking or assisting with a sample collection of grapes for chemical analysis of smoke taint markers
Small Energy Scale for Mixed-Valent Uranium Materials
We investigate a two-channel Anderson impurity model with a magnetic
and a quadrupolar ground doublet, and a excited triplet. Using
the numerical renormalization group method, we find a crossover to a non-Fermi
liquid state below a temperature varying as the triplet-doublet
splitting to the 7/2 power. To within numerical accuracy, the non-linear
magnetic susceptibility and the contribution to the linear
susceptibility are given by universal one-parameter scaling functions. These
results may explain UBe as mixed valent with a small crossover scale
.Comment: 4 pages, 3 figures, REVTeX, to appear in Phys. Rev. Let
Kondo Effect of a Magnetic Ion Vibrating in a Harmonic Potential
To discuss Kondo effects of a magnetic ion vibrating in the sea of conduction
electrons, a generalized Anderson model is derived. The model includes a new
channel of hybridization associated with phonon emission or absorption. In the
simplest case of the localized electron orbital with the s-wave symmetry,
hybridization with p-waves becomes possible. Interesting interplay among the
conventional s-wave Kondo effect and the p-wave one and the Yu-Anderson type
Kondo effect is found and the ground state phase diagram is determined by using
the numerical renormalization group method. Two different types of stable fixed
points are identified and the two-channel Kondo fixed points are generically
realized on the boundary.Comment: 15 pages, 17 figures, J. Phys. Soc. Jpn. 80 (2011) No.6 to be
publishe
Solution of two channel spin-flavor Kondo model
We investigate a model where an impurity couples to both the spin and the
flavor currents of the two channel conduction electrons. This model can be used
as a prototype model of a magnetic impurity tunneling between two sites in a
metal and of some heavy fermion systems where the ground state of the impurity
has a fourfold degeneracy. The system is shown to flow to a doubly degenerate
non fermi-liquid(NFL) fixed point; the thermodynamic quantities show NFL
behaviors, but the transport quantities show fermi liquid (FL) behaviors . A
spin-flavor coupling double tensor term is shown to drive the system to one of
the two singlet FL fixed points. The relation with SU(4) Coqblin-Schrieffer
model is studied. The implications on the possible experiments are given.Comment: 11 pages, REVTEX, no figures. To appear in Phys. Rev. B (Rapid Comm.)
July 1, 199
- …