11 research outputs found

    Accelerator development in India for ADS programme

    Get PDF
    At BARC, development of a Low Energy High Intensity Proton Accelerator (LEHIPA), as front-end injector of the 1 GeV accelerator for the ADS programme, has been initiated. The major components of LEHIPA (20 MeV, 30 mA) are a 50 keV ECR ion source, a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 meV drift tube linac (DTL). The Low Energy Beam Transport (LEBT) and Medium Energy Beam Transport (MEBT) lines match the beam from the ion source to RFQ and from RFQ to DTL respectively. Design of these systems has been completed and fabrication of their prototypes has started. Physics studies of the 20-1000 MeV part of the Linac are also in progress. In this paper, the present status of this project is presented

    Role of beam dynamics studies for accelerator safety

    No full text
    439-441<span style="font-size:10.0pt;font-family: " times="" new="" roman";mso-fareast-font-family:"times="" roman";mso-bidi-font-family:="" mangal;mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:="" hi"="" lang="EN-US">Several accelerators are being designed for various applications ranging from research, medical applications to energy production. The beam dynamics studies are used to work out the configuration of these accelerators. One of the objectives of these studies is to optimize the size of the components and minimization of the beam losses in the system. The large beam losses will not only produce radioactivity in the accelerator components but also can melt them due to large beam energy deposition. This can lead to air rush in the system and hence the damage of the whole system. Optimization of the beam dynamics is of great importance particularly in high current accelerators where space charge forces play an important role. In the case of high intensity accelerators several new phenomena like resonances and beam halos formation take place which leads to large beam losses. For hands on maintenance of the accelerator components for ADS applications, it is estimated that the beam loss should be &lt; 1 nA/m which requires a careful beam dynamics studies for the system. It is also useful to understand the beam loss mechanism and their minimization particularly in the case of high current accelerators.</span

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics

    ILC Reference Design Report Volume 3 - Accelerator

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC
    corecore