107 research outputs found
Learning to Recognize Actions from Limited Training Examples Using a Recurrent Spiking Neural Model
A fundamental challenge in machine learning today is to build a model that
can learn from few examples. Here, we describe a reservoir based spiking neural
model for learning to recognize actions with a limited number of labeled
videos. First, we propose a novel encoding, inspired by how microsaccades
influence visual perception, to extract spike information from raw video data
while preserving the temporal correlation across different frames. Using this
encoding, we show that the reservoir generalizes its rich dynamical activity
toward signature action/movements enabling it to learn from few training
examples. We evaluate our approach on the UCF-101 dataset. Our experiments
demonstrate that our proposed reservoir achieves 81.3%/87% Top-1/Top-5
accuracy, respectively, on the 101-class data while requiring just 8 video
examples per class for training. Our results establish a new benchmark for
action recognition from limited video examples for spiking neural models while
yielding competetive accuracy with respect to state-of-the-art non-spiking
neural models.Comment: 13 figures (includes supplementary information
- …