188 research outputs found

    A Predictive Algorithm For Wetlands In Deep Time Paleoclimate Models

    Get PDF
    Methane is a powerful greenhouse gas produced in wetland environments via microbial action in anaerobic conditions. If the location and extent of wetlands are unknown, such as for the Earth many millions of years in the past, a model of wetland fraction is required in order to calculate methane emissions and thus help reduce uncertainty in the understanding of past warm greenhouse climates. Here we present an algorithm for predicting inundated wetland fraction for use in calculating wetland methane emission fluxes in deep time paleoclimate simulations. The algorithm determines, for each grid cell in a given paleoclimate simulation, the wetland fraction predicted by a nearest neighbours search of modern day data in a space described by a set of environmental, climate and vegetation variables. To explore this approach, we first test it for a modern day climate with variables obtained from observations and then for an Eocene climate with variables derived from a fully coupled global climate model (HadCM3BL-M2.2). Two independent dynamic vegetation models were used to provide two sets of equivalent vegetation variables which yielded two different wetland predictions. As a first test the method, using both vegetation models, satisfactorily reproduces modern data wetland fraction at a course grid resolution, similar to those used in paleoclimate simulations. We then applied the method to an early Eocene climate, testing its outputs against the locations of Eocene coal deposits. We predict global mean monthly wetland fraction area for the early Eocene of 8 to 10 × 106km2 with corresponding total annual methane flux of 656 to 909 Tg, depending on which of two different dynamic global vegetation models are used to model wetland fraction and methane emission rates. Both values are significantly higher than estimates for the modern-day of 4 × 106km2 and around 190Tg (Poulter et. al. 2017, Melton et. al., 2013

    Insensitivity of alkenone carbon isotopes to atmospheric CO<sub>2</sub> at low to moderate CO<sub>2</sub> levels

    Get PDF
    Atmospheric pCO2 is a critical component of the global carbon system and is considered to be the major control of Earth’s past, present and future climate. Accurate and precise reconstructions of its concentration through geological time are, therefore, crucial to our understanding of the Earth system. Ice core records document pCO2 for the past 800 kyrs, but at no point during this interval were CO2 levels higher than today. Interpretation of older pCO2 has been hampered by discrepancies during some time intervals between two of the main ocean-based proxy methods used to reconstruct pCO2: the carbon isotope fractionation that occurs during photosynthesis as recorded by haptophyte biomarkers (alkenones) and the boron isotope composition (δ11B) of foraminifer shells. Here we present alkenone and δ11B-based pCO2 reconstructions generated from the same samples from the Plio-Pleistocene at ODP Site 999 across a glacial-interglacial cycle. We find a muted response to pCO2 in the alkenone record compared to contemporaneous ice core and δ11B records, suggesting caution in the interpretation of alkenone-based records at low pCO2 levels. This is possibly caused by the physiology of CO2 uptake in the haptophytes. Our new understanding resolves some of the inconsistencies between the proxies and highlights that caution may be required when interpreting alkenone-based reconstructions of pCO2

    Productivity and international competitiveness of agriculture in the European Union and the United States

    Get PDF
    This study looks at international competitiveness of agriculture in the European Union and the United States. The most intuitive concept is that of price competitiveness.We calculate relative prices for 11 member states of the European Union and the United States for the period 1973–2002. We assume that markets are perfectly competitive and in long-run equilibrium, so that the observed price always equals average total cost, as measured by the cost dual to the production function. This assumption is used in our calculation of relative competitiveness and productivity gaps between the European Union and the United States and in our decomposition of relative price movements between changes in relative input prices and changes in relative productivity levelsPublicad

    Warming drove the Expansion of Marine Anoxia in the Equatorial Atlantic during the Cenomanian Leading up to Oceanic Anoxic Event 2

    Get PDF
    Oceanic Anoxic Event (OAE) 2 (~93.5 millions of years ago) is characterized by widespread marine anoxia and elevated burial rates of organic matter. However, the factors that led to this widespread marine deoxygenation and the possible link with climatic change remain debated. Here, we report long-term biomarker records of water column anoxia, water column and photic zone euxinia (PZE), and sea surface temperature (SST) from Demerara Rise in the equatorial Atlantic that span 3.8 million years of the late Cenomanian to Turonian, including OAE 2. We find that total organic carbon (TOC) contents are high but variable (0.41&ndash;17 wt. %) across the Cenomanian and increase with time. This long-term TOC increase coincides with a TEX86-derived SST increase from ~ 35 to 40 &deg;C as well as the episodic occurrence of 28,30-dinorhopane (DNH) and lycopane, indicating warming and expansion of the oxygen minimum zone (OMZ) predating OAE 2. Water column euxinia persisted through much of the late Cenomanian, as indicated by the presence of C35 hopanoid thiophene, but only reached the photic zone during OAE 2, as indicated by the presence of isorenieratane. Using these biomarker records, we suggest that water column anoxia and euxinia in the equatorial Atlantic preceded OAE 2 and this deoxygenation was driven by global warming.</p

    Regulation of anaerobic methane oxidation in sediments of the Black Sea

    Get PDF
    International audienceAnaerobic oxidation of methane (AOM) and sulfate reduction (SRR) were investigated in sediments of the western Black Sea, where methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using radiotracers in combination with pore water chemistry and stable isotopes. On the shelf of the Danube paleo-delta and the Dnjepr Canyon, AOM did not consume methane effectively and upwards diffusing methane created an extended sulfate-methane transition zone (SMTZ) that spread over more than 2.5 m and was located in formerly limnic sediment. Measurable AOM rates occurred mainly in the lower part of the SMTZ, sometimes even at depths where sulfate seemed to be unavailable. The inefficiency of methane oxidation appears to be linked to the limnic history of the sediment, since in all cores methane was completely oxidized at the limnic-marine transition. The upward tailing of methane was less pronounced in a core from the deep sea in the area of the Dnjepr Canyon, the only station with a SMTZ close to the marine deposits. Sulfate reduction rates were mostly extremely low, and in the SMTZ were even lower than AOM rates. Rates of bicarbonate-based methanogenesis were below detection limit in two of the cores, but ?13C values of methane indicate a biogenic origin. The most depleted ?13C-signal was found in the SMTZ of the core from the deep sea, most likely as a result of carbon recycling between AOM and methanogenesis

    Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum

    Get PDF
    The response of the Earth system to greenhouse-gas-driven warming is of critical importance for the future trajectory of our planetary environment. Hyperthermal events – past climate transients with global-scale warming significantly above background climate variability – can provide insights into the nature and magnitude of these responses. The largest hyperthermal of the Cenozoic was the Paleocene–Eocene Thermal Maximum (PETM ∼ 56 Ma). Here we present new high-resolution bulk sediment stable isotope and major element data for the classic PETM section at Zumaia, Spain. With these data we provide a new detailed stratigraphic correlation to other key deep-ocean and terrestrial PETM reference sections. With this new correlation and age model we are able to demonstrate that detrital sediment accumulation rates within the Zumaia continental margin section increased more than 4-fold during the PETM, representing a radical change in regional hydrology that drove dramatic increases in terrestrial-to-marine sediment flux. Most remarkable is that detrital accumulation rates remain high throughout the body of the PETM, and even reach peak values during the recovery phase of the characteristic PETM carbon isotope excursion (CIE). Using a series of Earth system model inversions, driven by the new Zumaia carbon isotope record, we demonstrate that the silicate weathering feedback alone is insufficient to recover the PETM CIE, and that active organic carbon burial is required to match the observed dynamics of the CIE. Further, we demonstrate that the period of maximum organic carbon sequestration coincides with the peak in detrital accumulation rates observed at Zumaia. Based on these results, we hypothesise that orbital-scale variations in subtropical hydro-climates, and their subsequent impact on sediment dynamics, may contribute to the rapid climate and CIE recovery from peak-PETM conditions

    Tropical peatland biogeochemistry along an ecological transect: the enigmatic fate of organic matter

    Get PDF
    This is the final version. Available from the European Association of Geoscientists & Engineers via the DOI in this record. Peatlands play a pivotal role in the global carbon cycle. Despite only covering 3% of the world’s surface, peatlands hold 500–700 Gt of carbon (Page & Baird, 2016). These dense carbon stocks are sensitive to direct and/or indirect human intervention and can quickly turn from carbon sink to carbon source when perturbed. Additionally, peat deposits are crucial for our understanding of terrestrial environmental change by recording environmental parameters such as temperature and biogeochemical cycling through geological time (Naafs et al., 2019). Constraining the magnitude and rate of change during past periods of climatic change in the terrestrial realm is essential for accurately predicting the effects of anthropogenic global warming. Most peatland studies have focussed on reconstructing environmental parameters such as water table depth, temperature, vegetation, and pH, because those are readily available through quick observation or meteorological data. However, changes in the nature of the organic matter (OM) is often harder to characterize but is imperative to the tight balance between accumulation and degradation of peat. Especially in tropical peatlands, the nature of OM is largely understudied. Tropical peats are more carbon-dense compared to boreal peatlands, have a more active methane cycle, and can have a wider range of vegetation, which makes understanding their biogeochemistry vitally important. We investigated the biogeochemistry of a tropical peat along an ecological transect consisting of 5 sites: mangrove, mixed tropical forest, hardwood tropical forest, stunted forest with sawgrass and ombrotrophic (i.e., rain-fed) sawgrass bog. From each site, a 1–2 meter core was collected and analysed by pyrolysis-GC/MS, GC/MS (of apolar and polar fractions), 16S rRNA genomic profiling and, UPLC-QToF-MS. Our unique dataset allows for a direct comparison of the biogeochemistry of tropical peats under different vegetation and nutrient concentrations, but constant temperature
    • …
    corecore