212 research outputs found
Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments
Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects
(HiRes, AUGER, TA, EUSO, TUS,...) use air fluorescence to detect and measure
extensive air showers (EAS). The precise knowledge of the Fluorescence Light
Yield (FLY) is of paramount importance for the reconstruction of UHECR. The
MACFLY - Measurement of Air Cherenkov and Fluorescence Light Yield - experiment
has been designed to perform such FLY measurements. In this paper we will
present the results of FLY in the 290-440 nm wavelength range for dry air and
pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50
GeV. The experiment uses a 90Sr radioactive source for low energy measurement
and a CERN SPS electron beam for high energy. We find that the FLY is
proportional to the deposited energy (E_d) in the gas and we show that the air
fluorescence properties remain constant independently of the electron energy.
At the reference point: atmospheric dry air at 1013 hPa and 23C, the ratio
FLY/E_d=17.6 photon/MeV with a systematic error of 13.2%.Comment: 19 pages, 8 figures. Accepted for publication in Astroparticle
Physic
Improved model for the analysis of air fluorescence induced by electrons
A model recently proposed for the calculation of air-fluorescence yield
excited by electrons is revisited. Improved energy distributions of secondary
electrons and a more realistic Monte Carlo simulation including some additional
processes have allowed us to obtain more accurate results. The model is used to
study in detail the relationship between fluorescence intensity and deposited
energy in a wide range of primary energy (keVs - GeVs). In addition,
predictions on the absolute value of the fluorescence efficiency in the absence
of collisional quenching will be presented and compared with available
experimental data.Comment: Contribution to the 5th Fluorescence Workshop, El Escorial, Madrid,
Spain, September 2007, to appear in Nuclear Instruments and Methods A.
Revised version.- More details on the comparison with experimental dat
A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations
This paper presents a new resolution strategy for multi-scale streamer
discharge simulations based on a second order time adaptive integration and
space adaptive multiresolution. A classical fluid model is used to describe
plasma discharges, considering drift-diffusion equations and the computation of
electric field. The proposed numerical method provides a time-space accuracy
control of the solution, and thus, an effective accurate resolution independent
of the fastest physical time scale. An important improvement of the
computational efficiency is achieved whenever the required time steps go beyond
standard stability constraints associated with mesh size or source time scales
for the resolution of the drift-diffusion equations, whereas the stability
constraint related to the dielectric relaxation time scale is respected but
with a second order precision. Numerical illustrations show that the strategy
can be efficiently applied to simulate the propagation of highly nonlinear
ionizing waves as streamer discharges, as well as highly multi-scale nanosecond
repetitively pulsed discharges, describing consistently a broad spectrum of
space and time scales as well as different physical scenarios for consecutive
discharge/post-discharge phases, out of reach of standard non-adaptive methods.Comment: Support of Ecole Centrale Paris is gratefully acknowledged for
several month stay of Z. Bonaventura at Laboratory EM2C as visiting
Professor. Authors express special thanks to Christian Tenaud (LIMSI-CNRS)
for providing the basis of the multiresolution kernel of MR CHORUS, code
developed for compressible Navier-Stokes equations (D\'eclaration d'Invention
DI 03760-01). Accepted for publication; Journal of Computational Physics
(2011) 1-2
Spatially hybrid computations for streamer discharges: II. Fully 3D simulations
We recently have presented first physical predictions of a spatially hybrid
model that follows the evolution of a negative streamer discharge in full three
spatial dimensions; our spatially hybrid model couples a particle model in the
high field region ahead of the streamer with a fluid model in the streamer
interior where electron densities are high and fields are low. Therefore the
model is computationally efficient, while it also follows the dynamics of
single electrons including their possible run-away. Here we describe the
technical details of our computations, and present the next step in a
systematic development of the simulation code. First, new sets of transport
coefficients and reaction rates are obtained from particle swarm simulations in
air, nitrogen, oxygen and argon. These coefficients are implemented in an
extended fluid model to make the fluid approximation as consistent as possible
with the particle model, and to avoid discontinuities at the interface between
fluid and particle regions. Then two splitting methods are introduced and
compared for the location and motion of the fluid-particle-interface in three
spatial dimensions. Finally, we present first results of the 3D spatially
hybrid model for a negative streamer in air
Air Fluorescence Relevant for Cosmic-Ray Detection - Summary of the 5th Fluorescence Workshop, El Escorial 2007
High-energy cosmic rays with energies exceeding eV are frequently
observed by measurements of the fluorescence light induced by air showers. A
major contribution to the systematic uncertainties of the absolute energy scale
of such experiments is the insufficient knowledge of the fluorescence light
yield of electrons in air. The aim of the 5th Fluorescence Workshop was to
bring together experimental and theoretical expertise to discuss the latest
progress on the investigations of the fluorescence light yield. The results of
the workshop will be reviewed as well as the present status of knowledge in
this field. Emphasis is given to the fluorescence light yield important for air
shower observations and its dependence on atmospheric parameters, like
pressure, temperature, and humidity. The effects of the latest results on the
light observed from air showers will be discussed.Comment: Nucl. Instr. & Meth. in pres
Positive and negative streamers in ambient air: modeling evolution and velocities
We simulate short positive and negative streamers in air at standard
temperature and pressure. They evolve in homogeneous electric fields or emerge
from needle electrodes with voltages of 10 to 20 kV. The streamer velocity at
given streamer length depends only weakly on the initial ionization seed,
except in the case of negative streamers in homogeneous fields. We characterize
the streamers by length, head radius, head charge and field enhancement. We
show that the velocity of positive streamers is mainly determined by their
radius and in quantitative agreement with recent experimental results both for
radius and velocity. The velocity of negative streamers is dominated by
electron drift in the enhanced field; in the low local fields of the present
simulations, it is little influenced by photo-ionization. Though negative
streamer fronts always move at least with the electron drift velocity in the
local field, this drift motion broadens the streamer head, decreases the field
enhancement and ultimately leads to slower propagation or even extinction of
the negative streamer.Comment: 18 pages, 10 figure
An adaptive grid refinement strategy for the simulation of negative streamers
The evolution of negative streamers during electric breakdown of a
non-attaching gas can be described by a two-fluid model for electrons and
positive ions. It consists of continuity equations for the charged particles
including drift, diffusion and reaction in the local electric field, coupled to
the Poisson equation for the electric potential. The model generates field
enhancement and steep propagating ionization fronts at the tip of growing
ionized filaments. An adaptive grid refinement method for the simulation of
these structures is presented. It uses finite volume spatial discretizations
and explicit time stepping, which allows the decoupling of the grids for the
continuity equations from those for the Poisson equation. Standard refinement
methods in which the refinement criterion is based on local error monitors fail
due to the pulled character of the streamer front that propagates into a
linearly unstable state. We present a refinement method which deals with all
these features. Tests on one-dimensional streamer fronts as well as on
three-dimensional streamers with cylindrical symmetry (hence effectively 2D for
numerical purposes) are carried out successfully. Results on fine grids are
presented, they show that such an adaptive grid method is needed to capture the
streamer characteristics well. This refinement strategy enables us to
adequately compute negative streamers in pure gases in the parameter regime
where a physical instability appears: branching streamers.Comment: 46 pages, 19 figures, to appear in J. Comp. Phy
Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures
Photo-ionization is the accepted mechanism for the propagation of positive
streamers in air though the parameters are not very well known; the efficiency
of this mechanism largely depends on the presence of both nitrogen and oxygen.
But experiments show that streamer propagation is amazingly robust against
changes of the gas composition; even for pure nitrogen with impurity levels
below 1 ppm streamers propagate essentially with the same velocity as in air,
but their minimal diameter is smaller, and they branch more frequently.
Additionally, they move more in a zigzag fashion and sometimes exhibit a
feathery structure. In our simulations, we test the relative importance of
photo-ionization and of the background ionization from pulsed repetitive
discharges, in air as well as in nitrogen with 1 ppm O2 . We also test
reasonable parameter changes of the photo-ionization model. We find that photo-
ionization dominates streamer propagation in air for repetition frequencies of
at least 1 kHz, while in nitrogen with 1 ppm O2 the effect of the repetition
frequency has to be included above 1 Hz. Finally, we explain the feather-like
structures around streamer channels that are observed in experiments in
nitrogen with high purity, but not in air.Comment: 12 figure
Probing background ionization: Positive streamers with varying pulse repetition rate and with a radioactive admixture
Positive streamers need a source of free electrons ahead of them to
propagate. A streamer can supply these electrons by itself through
photo-ionization, or the electrons can be present due to external background
ionization. Here we investigate the effects of background ionization on
streamer propagation and morphology by changing the gas composition and the
repetition rate of the voltage pulses, and by adding a small amount of
radioactive Krypton 85.
We find that the general morphology of a positive streamer discharge in high
purity nitrogen depends on background ionization: at lower background
ionization levels the streamers branch more and have a more feather-like
appearance. This is observed both when varying the repetition rate and when
adding Krypton 85, though side branches are longer with the radioactive
admixture. But velocities and minimal diameters of streamers are virtually
independent of the background ionization level. In air, the inception cloud
breaks up into streamers at a smaller radius when the repetition rate and
therefore the background ionization level is higher. When measuring the effects
of the pulse repetition rate and of the radioactive admixture on the discharge
morphology, we found that our estimates of background ionization levels are
consistent with these observations; this gives confidence in the estimates.
Streamer channels generally do not follow the paths of previous discharge
channels for repetition rates of up to 10 Hz. We estimate the effect of
recombination and diffusion of ions and free electrons from the previous
discharge and conclude that the old trail has largely disappeared at the moment
of the next voltage pulse; therefore the next streamers indeed cannot follow
the old trail.Comment: 30 pages, 13 figure
Probing photo-ionization: Experiments on positive streamers in pure gasses and mixtures
Positive streamers are thought to propagate by photo-ionization whose
parameters depend on the nitrogen:oxygen ratio. Therefore we study streamers in
nitrogen with 20%, 0.2% and 0.01% oxygen and in pure nitrogen, as well as in
pure oxygen and argon. Our new experimental set-up guarantees contamination of
the pure gases to be well below 1 ppm. Streamers in oxygen are difficult to
measure as they emit considerably less light in the sensitivity range of our
fast ICCD camera than the other gasses. Streamers in pure nitrogen and in all
nitrogen/oxygen mixtures look generally similar, but become somewhat thinner
and branch more with decreasing oxygen content. In pure nitrogen the streamers
can branch so much that they resemble feathers. This feature is even more
pronounced in pure argon, with approximately 10^2 hair tips/cm^3 in the
feathers at 200 mbar; this density could be interpreted as the free electron
density creating avalanches towards the streamer stem. It is remarkable that
the streamer velocity is essentially the same for similar voltage and pressure
in all nitrogen/oxygen mixtures as well as in pure nitrogen, while the oxygen
concentration and therefore the photo-ionization lengths vary by more than five
orders of magnitude. Streamers in argon have essentially the same velocity as
well. The physical similarity of streamers at different pressures is confirmed
in all gases; the minimal diameters are smaller than in earlier measurements.Comment: 28 pages, 14 figures. Major differences with v1: - appendix and
spectra removed - subsection regarding effects of repetition frequency added
- many more smaller change
- …