10 research outputs found
FUNCTIONALIZED POLYMERIC NANOPARTICLES: A NOVEL TARGETED APPROACH FOR ONCOLOGY CARE
Popular cancer therapies face extreme disadvantages, including multimedicament tolerance and non-target impact. These issues will lead to poorer patient conformity and poor levels of survival. Successful medical therapies for cancer patients are desperately required. Nano-particulate structures with a pluronic base represent revolutionary platforms for anti-cancer agent provision. These structures provide great potential for the advancement of cancer therapy due to their pharmacological properties and sufficient physicochemical characteristics. This review aims to offer a more detailed description of the pluronic drug delivery mechani sms that are currently available and explains pluronic as a medicinal polymer. Hydrophobic payload formulations and updated, targeted distribution mechanisms are explained based on pluronic formulations. This analysis offers a rundown of the current situation art related to the theranostic application of polymer micelles targeting the microenvironment of cancer cells. Some guidelines for the future scope and possible opportunities are also been addressed.
Search criteria: Primary sources such as Medline a principal component of PubMed, an online, searchable, and biomedical and life science research literature database has been used. It brings readers to almost any area of interest with research and journal articles. One of the internet resources of importance to get scientific publications is specialized scientific search engines known as Google Scholar a database of research material that can be searched for. I have used the online electronic access portal of Elsevier, such as Science Direct to its publications. Scopus is the biggest abstract and peer-reviewed literature database for scientific journals, books, and conference work. Keywords like Cancer, Pluronic, Nanoparticles, Chemotherapy, Cancer, Theranostic, Targeted, Micelles, and Core-shell are crucial as they notify search engines of the content of the site.
Range of years: 1992-2020
FORMULATION AND CHARACTERISATION OF MELOXICAM LOADED EMULGEL FOR TOPICAL APPLICATION
Objective: The aim of the research work is to formulate emulgel of Meloxicam for topical application.Methods: The method used for preparation of microemulsion was water titration method with Oleic acid as oil phase, Tween 20 as surfactant and PEG 400 as co-surfactant and its concentrations were fixed based on Pseudoternary phase diagrams. The optimized emulsion formulation was incorporated into the gel matrix that is Carbopol981 NF and Carbopol 974 P NF.Results: The prepared emulsions were characterized for globule size, drug content, zeta potential and the emulgel for physical appearance, drug content, pH, viscosity, spreadability, extrudability and in vitro drug release studies. The optimized emulsion formulations E1 and F1 showed globule size of 176 nm and 128 nm respectively and the emulgel formulation M2F1 with 1.5% Carbopol 981 and optimized F1 emulsion formulation showed in vitro drug release of 89.934% at the end of 8 h. The optimized formulation showed no skin irritation when compared with standard irritant 0.8% of Formalin. The optimized formulation showed better anti-inflammatory effect when compared with marketed formulation.Conclusion: Meloxicam was proven to be a suitable candidate for formulating emulgel for topical delivery to achieve better patient compliance.Â
FORMULATION AND EVALUATION OF METOCLOPRAMIDE RAPIDLY DISINTEGRATING TABLETS
Metoclopramide an effective antiemetic; acting on the CTZ, blocks apomorphine induced vomiting. Rapidly disintegrating tablets of metoclopramide hydrochloride were prepared by mass extrusion technique using three different superdisintegrants Sodium Starch Glycolate, Avicel Ph 102, L-HPC. Pre-compression parameters and post-compression parameters were evaluated for all the nine formulations. Angle of repose and % compressibility showed good flowability in all the formulations. Weight variation was found within limits and drug content of all the formulations was found in the range of 9.700 mg - 9.925 mg in each tablet. The hardness of all the formulations was almost uniform and possessed good mechanical strength with sufficient hardness. The wetting time in all the formulation was fast. Formulations F3 containing sodium starch glycolate 10% & F6 containing Avicel ph 102 10% tablets disintegrated rapidly to release the drug. In vitro release studies revealed that 96% of drug releases from SSG, MCC (90%), and L-HPC (85%) for all the formulations were within 15 min. Based on above results, three formulations F3, F6, F9 were selected for stability studies these formulations showed not much variation in any parameter even after the period of 30 days, formulations F3, F6, F9 are found to be stable and retained their original properties. Thus, it may be concluded that formulation containing sodium starch glycolate as superdisintegrants is fulfilling all the parameters satisfactorily. It showed excellent in vitro disintegration, in vitro dispersion time, compared to other superdisintegrants. And the rapidly disintegrating tablets can be prepared by mass extrusion technique Â
An Improvement of the Efficacy of Moxifloxacin HCl for the Treatment of Bacterial Keratitis by the Formulation of Ocular Mucoadhesive Microspheres
The aim of this study was to prepare novel ocular mucoadhesive microspheres of Moxifloxacin HCl to increase its residence time on the ocular surface and to enhance its therapeutic efficacy in ocular bacterial keratitis. Microspheres were fabricated with different grades of Methocel and Sodium CMC as polymers. Microspheres were evaluated for their particle size, morphology, encapsulation efficiency, mucoadhesion, antimicrobial efficacy, and in vitro drug release studies. In vivo studies were carried out for the promising formulation on eyes of albino rabbits by inducing bacterial keratitis. A sterile microspheres suspension in light mineral oil was applied to infected eyes twice a day. A marketed conventional eye drop was used as a positive control. Eyes were examined daily for improvement of clinical signs of bacterial keratitis by an ophthalmologist. The average particle size of microspheres was found to be less than 80 μm. Methocel microspheres were found to have a smoother surface than Sodium CMC. Entrapment efficiency was enhanced with an increased polymer concentration and viscosity. The formulation containing Methocel K100M with a drug: polymer ratio of 1:2 exerted longer corneal and conjunctival mucoadhesion time of 8.45±0.15 h and 9.40±0.53 h respectively. In vitro release of Moxifloxacin HCl from microspheres was retarded with increased viscosity and concentration of polymers, and was controlled by diffusion as well as polymer relaxation. All formulations showed comparable antimicrobial activity in comparison with conventional marketed eye drops. The formulation containing Methocel K100M with a drug: polymer ratio of 1:2 was found to be a promising formulation and was used for the in vivo studies. The in vivo studies revealed that microspheres demonstrated significantly lower clinical scores and reduced the total duration of therapy than the marketed Moxifloxacin HCl eye drops. In vitro and in vivo studies showed that ocular mucoadhesive microspheres of Moxifloxacin HCl were found to have an improved efficacy in the treatment of ocular bacterial keratitis in comparison with the marketed formulation
A DoE-based development and characterization of Nadifloxacin-loaded transethosomal gel for the treatment of Acne vulgaris
Abstract Background The objective of this current research was to enhance the topical delivery of Nadifloxacin (NDFX) by incorporating it into a transethosomal gel formulation. NDFX has limited penetration into the deep layer of the skin because it is poorly water soluble and it has a log p value of 2.47. To optimize the formulation, the “Box–Behnken design” was utilized. The independent variables included phosphatidylcholine 90, tween 80 and ethanol. The produced formulations underwent evaluation for entrapment efficiency, vesicle size and zeta potential. The optimized formulation was then incorporated into suitable gel bases and subjected to further investigation, including in vitro diffusion, ex vivo penetration, in vitro antimicrobial assay and in vivo anti-acne activity. Results The optimized formulation exhibited an entrapment efficiency of 80.12%, a vesicle size of 156.1 nm and a zeta potential of − 33.23 mV. TEM images confirmed the presence of encapsulated vesicles with a spherical shape. The in vitro diffusion study demonstrated that the transethosomal gel containing Carbopol 934 (1%) exhibited higher drug release compared to the HPMC K4M gels. Furthermore, the ex vivo permeation study revealed that the optimized transethosomal gel demonstrated increased permeation compared to the commercially available formulation. Conclusion The optimized transethosomal formulation displayed enhanced in vitro antimicrobial and in vivo anti-acne effects against Propionibacterium acnes in Wistar albino rats when compared to the marketed formulation