10 research outputs found

    Effects of Task Interference on Kinematics and Dual-Task Cost of Running in Early Childhood

    No full text
    Children aged 3–8 are in a critical period for motor development and postural control. Running is a basic motor skill that children need to master in early childhood. While running, children are prone to dangerous events such as falls. This study investigates the kinematic characteristics of running by children associated with different interference tasks, i.e., normalized running, cognitive dual-tasks, and obstacle crossing tasks, and provides a theoretical foundation for the interference mechanism of children’s dynamic postural control and for screening of motor disorders. Two hundred children aged 3–8 were recruited. The BTS Bioengineering infrared motion capture system was used to collect spatiotemporal and kinematic running data under three tasks. Repeated measures of variance analysis were used to compare the effects of different interference tasks and ages on children’s running signs. The main and interaction effect tests were compared by the Bonferroni method. The results and conclusions are as follows: (1) Running characteristics of early childhood are influenced by interference tasks and age. With interference tasks, the overall characteristics of running by children aged 3–8 showed an increasing trend in running cycle time and a decreasing trend in stride length, step length, cadence, and speed. (2) Both cognitive and obstacle crossing tasks had costs, and cognitive task costs were greater than obstacle crossing costs. Children adopted a “task first” running strategy with different interference tasks. When facing cognitive tasks, their overall joint motion decreased, and they reduced joint motions to promote task completion. When facing obstacle crossing tasks, because of the characteristics of the task itself, children increased joint motions to cope with interference. (3) In terms of age, the running characteristics showed a nonlinear development trend in various indicators, with a degree of recurrence and high variability in adjacent age groups. (4) The dual-task interference paradigm of “postural-cognition” can be used as a motor intervention tool to promote the development of basic motor skills in early childhood

    High-Yield Synthesis of Long Silver Nanowires via Chromic Chloride and a Stable Reaction Environment

    No full text
    The search for suitable synthesis methods and parameters capable of controlling the length, diameter, and yield of silver nanowires (AgNWs) is still an emerging strategy today. Therefore, a method for high-yield synthesis of long AgNWs via chromic chloride and a stable reaction environment was proposed. The results show that Cr3+ could restore the adsorbed atomic oxygen quickly and provide a high efficiency in the prevention of the oxidative etching, for the ion of Cr2+ oxidized to Cr3+ has a lower standard electrode potential, and a more stable reaction environment provided by the coupling method could avoid disturbing the growth of the {111} reactive sites of the wires; then, the yield and length of the AgNWs were improved. The length of the AgNWs was over 75 μm and even 160 μm; the yield of the AgNWs was over 90%, which provides the referable basis for the synthesis of ultralong AgNWs

    Biomechanical Characteristics of Vertical Jumping of Preschool Children in China Based on Motion Capture and Simulation Modeling

    No full text
    Vertical jumping is one of the basic motor skills, and it is an essential part of many sports. The main purpose of this paper is to investigate characteristics of vertical jumping of children. This paper uses a motion capture system, three-dimensional platforms, and a simulation modeling system to analyze the kinematics and dynamics performance of children’s vertical jumping. The compression time increases from 3 to 4 years old, and flight height and time increases with age and stage gradually. In the compression phase and pushing phase, the hip and knee joint play a major role; in the landing phase, the knee and ankle joint play a major role. Muscle forces are mainly affected by age, and the three types of muscle force had two different trends. The muscle force of the shank and thigh increased with age, and the pelvic girdle muscles showed an “low–high–low” trend. The regression model suggests that the force of GMiP and the hip angular velocity have a great influence on jumping ability. Therefore, if we want to improve the jumping ability of preschool children, we should pay more attention to hip exercises. We should integrate the hip exercises into interesting games, which are more in line with their physical and mental health

    Synthesis and Characterization of High-Purity Ultrafine Platinum Particles by Chemical Refining Method

    No full text
    High-purity ultrafine platinum particles are widely used to fabricate platinum electrode oxygen sensors for automobiles and thick-film platinum resistance temperature elements. In this study, the near-spherical ultrafine Pt particles of high purity were synthesized by chemical purification, spray-drying, and ignition from crude Pt powder. Impurities in the initial Pt powder were eliminated by the 001×7 strong acid cation resin exchange column and precipitation treatment. Near-spherical (NH4)2PtCl6 particles were obtained after spray-drying, and then the microstructure and size of as-synthesized Pt particles were controlled by the ignition process. The influences of different heating temperatures during ignition treatment on the microstructure and size of Pt particles were investigated. The purity of as-synthesized Pt particles was higher than 99.999 wt%, and the average size was about 1.12 μm. The results indicate that high-purity ultrafine Pt particles can be efficiently synthesized by chemical refining

    Synthesis and Characterization of Nanoscale Tungsten Particles with Hollow Superstructure Using Spray Drying Combined with Calcination Process

    No full text
    Abstract Nanoscale tungsten (W) powder is used in some special materials. In this study, a hollow superstructure W powder consisting of nanoparticles was synthesized by spray drying combined with two-step calcination from commercial (NH4)6W7O24·6H2O. The high-pressure gas (HPG) was the significant factor in spray drying process, which affect the BET surface area and average particles size of the spray-dried powders. The detailed influences of calcined steps and calcination temperature in the microstructure and average particles size of final W particles were investigated. The size distribution of as-synthesized nanoscale W particles with hollow superstructure was from 40 to 200 nm, and the average size was about 100 nm. The as-synthesized W powder shows good sintering properties. It should be noted that the powder technology in this study can be used to synthesize other powders with high-performance requirements. Graphical abstract
    corecore