460 research outputs found

    A simple and efficient BEM implementation of quasistatic linear visco-elasticity

    Get PDF
    A simple, yet efficient procedure to solve quasistatic problems of special linear visco-elastic solids at small strains with equal rheological response in all tensorial components, utilizing boundary element method (BEM), is introduced. This procedure is based on the implicit discretisation in time (the so-called Rothe method) combined with a simple "algebraic" transformation of variables, leading to a numerically stable procedure (proved explicitly by discrete energy estimates), which can be easily implemented in a BEM code to solve initial-boundary value visco-elastic problems by using the Kelvin elastostatic fundamental solution only. It is worth mentioning that no inverse Laplace transform is required here. The formulation is straightforward for both 2D and 3D problems involving unilateral frictionless contact. Although the focus is to the simplest Kelvin-Voigt rheology, a generalization to Maxwell, Boltzmann, Jeffreys, and Burgers rheologies is proposed, discussed, and implemented in the BEM code too. A few 2D and 3D initial-boundary value problems, one of them with unilateral frictionless contact, are solved numerically

    Carrier field shock formation of long wavelength femtosecond pulses in dispersive media

    Full text link
    We numerically demonstrate the formation of carrier field shocks in various dispersive media for a wide variety of input conditions using two different electric field propagation models. In addition, an investigation of the impact of numerous physical effects on carrier wave shock is performed. It is shown that in many cases a field shock is essentially unavoidable and therefore extremely important in the propagation of intense long wavelength pulses in weakly dispersive nonlinear media such as noble gases, air, and single-crystal diamond. The results presented here are expected to have a significant impact in the field of ultrashort nonlinear optics, attosecond pulse generation, and wavepacket synthesis where the use of mid-IR wavelengths is becoming increasingly more important.Comment: 14 pages, 17 figure

    Thermodynamics of Electrolytes on Anisotropic Lattices

    Full text link
    The phase behavior of ionic fluids on simple cubic and tetragonal (anisotropic) lattices has been studied by grand canonical Monte Carlo simulations. Systems with both the true lattice Coulombic potential and continuous-space 1/r1/r electrostatic interactions have been investigated. At all degrees of anisotropy, only coexistence between a disordered low-density phase and an ordered high-density phase with the structure similar to ionic crystal was found, in contrast to recent theoretical predictions. Tricritical parameters were determined to be monotonously increasing functions of anisotropy parameters which is consistent with theoretical calculations based on the Debye-H\"uckel approach. At large anisotropies a two-dimensional-like behavior is observed, from which we estimated the dimensionless tricritical temperature and density for the two-dimensional square lattice electrolyte to be Ttri=0.14T^*_{tri}=0.14 and ρtri=0.70\rho^*_{tri} = 0.70.Comment: submitted to PR

    Influence of randomly distributed magnetic nanoparticles on surface superconductivity in Nb films

    Full text link
    We report on combined resistance and magnetic measurements in a hybrid structure (HS) of randomly distributed anisotropic CoPt magnetic nanoparticles (MN) embedded in a 160 nm Nb thick film. Our resistance measurements exhibited a sharp increase at the magnetically determined bulk upper-critical fields Hc2(T). Above these points the resistance curves are rounded, attaining the normal state value at much higher fields identified as the surface superconductivity fields Hc3(T). When plotted in reduced temperature units, the characteristic field lines Hc3(T) of the HS and of a pure Nb film, prepared at exactly the same conditions, coincide for H10 kOe they strongly segregate. Interestingly, the characteristic value H=10 kOe is equal to the saturation field of the MN. The behavior mentioned above is observed only for the case where the field is normal to the HS, while is absent when the field is parallel to the film. Our experimental results suggest that the observed enhancement of surface superconductivity field Hc3(T) is possibly due to the not uniform local reduction of the external magnetic field by the dipolar fields of the MN.Comment: to be published in Phys. Rev.

    THE OLVIOS, RETHIS AND INACHOS DRAINAGE SYSTEM EVOLUTION AND HUMAN ACTIVITIES INFLUNCE OF THEIR FUTURE EVOLUTION

    Get PDF
    Olvios, Rethis and Inachos Rivers are multistory drainage systems that occur in Northern Peloponnesus, and at the present day they have and a reversed, North to South, flow element. Dervenios, Skoupeikos and Fonissa Rivers are the misfit streams of Olvios and revealed as juvenile streams and discharge to the Corinth gulf. Agiorgitikos River is the misfit stream of Rethis River and Seliandros River is the juvenile stream. Asopos, Nemeas and Rachiani Rives are the misfit streams of Inachos River and they also discharge to the Corinth gulf. Asopos River characterized as re-established stream. Physical factors such as tectonic regime (active and inactive faults), lithology, erosion and distance from the source influenced the three drainage systems evolution and could be influence them also in the future. The increase of human activities both in their southern parts and in the distal parts close to the coast could be change the physical evolution of the studied drainages, producing a new wind gap in the coastal area and a lake or a lagoon backwards of the coastal area, destroying villages and towns
    corecore