228 research outputs found
The Sloan Digital Sky Survey Reverberation Mapping Project: No Evidence for Evolution in the M-sigma Relation to z~1
We present host stellar velocity dispersion measurements for a sample of 88
broad-line quasars at 0.10.6) from the Sloan Digital Sky Survey
Reverberation Mapping (SDSS-RM) project. High signal-to-noise ratio coadded
spectra (average S/N~30 per 69 km/s pixel) from SDSS-RM allowed decomposition
of the host and quasar spectra, and measurement of the host stellar velocity
dispersions and black hole (BH) masses using the single-epoch (SE) virial
method. The large sample size and dynamic range in luminosity
(L5100=10^(43.2-44.7) erg/s) lead to the first clear detection of a correlation
between SE virial BH mass and host stellar velocity dispersion far beyond the
local universe. However, the observed correlation is significantly flatter than
the local relation, suggesting that there are selection biases in high-z
luminosity-threshold quasar samples for such studies. Our uniform sample and
analysis enable an investigation of the redshift evolution of the M-sigma
relation free of caveats by comparing different samples/analyses at disjoint
redshifts. We do not observe evolution of the M-sigma relation in our sample,
up to z~1, but there is an indication that the relation flattens towards higher
redshifts. Coupled with the increasing threshold luminosity with redshift in
our sample, this again suggests certain selection biases are at work, and
simple simulations demonstrate that a constant M-sigma relation is favored to
z~1. Our results highlight the scientific potential of deep coadded
spectroscopy from quasar monitoring programs, and offer a new path to probe the
co-evolution of BHs and galaxies at earlier times.Comment: replaced with the accepted version (minor changes and updated
references); ApJ in press; changed title to highlight the main resul
Millimeter-scale exfoliation of hBN with tunable flake thickness
As a two-dimensional (2D) dielectric material, hexagonal boron nitride (hBN)
is in high demand for applications in photonics, nonlinear optics, and
nanoelectronics. Unfortunately, the high-throughput preparation of
macroscopic-scale, high-quality hBN flakes with controlled thickness is an
ongoing challenge, limiting device fabrication and technological integration.
Here, we present a metal thin-film exfoliation method to prepare hBN flakes
with millimeter-scale dimension, near-unity yields, and tunable flake thickness
distribution from 1-7 layers, a substantial improvement over scotch tape
exfoliation. The single crystallinity and high quality of the exfoliated hBN
are demonstrated with optical microscopy, atomic force microscopy, Raman
spectroscopy, and second harmonic generation. We further explore a possible
mechanism for the effectiveness and selectivity based on thin-film residual
stress measurements, density functional theory calculations, and transmission
electron microscopy imaging of the deposited metal films. We find that the
magnitude of the residual tensile stress induced by thin film deposition plays
a key role in determining exfoliated flake thickness in a manner which closely
resembles 3D semiconductor spalling. Lastly, we demonstrate that our
exfoliated, large-area hBN flakes can be readily incorporated as encapsulating
layers for other 2D monolayers. Altogether, this method brings us one step
closer to the high throughput, mass production of hBN-based 2D photonic,
optoelectronic, and quantum devices.Comment: 21 pages, 5 figures, work completed at Stanford Universit
The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview
The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a
dedicated multi-object RM experiment that has spectroscopically monitored a
sample of 849 broad-line quasars in a single 7 deg field with the SDSS-III
BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and
covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during
2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more
than 30 epochs. Supporting photometric monitoring in the g and i bands was
conducted at multiple facilities including the CFHT and the Steward Observatory
Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar
phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS
W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07,
with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month
baseline program aims to detect time lags between the quasar continuum and
broad line region (BLR) variability on timescales of up to several months (in
the observed frame) for ~10% of the sample, and to anchor the time baseline for
continued monitoring in the future to detect lags on longer timescales and at
higher redshift. SDSS-RM is the first major program to systematically explore
the potential of RM for broad-line quasars at z>0.3, and will investigate the
prospects of RM with all major broad lines covered in optical spectroscopy.
SDSS-RM will provide guidance on future multi-object RM campaigns on larger
scales, and is aiming to deliver more than tens of BLR lag detections for a
homogeneous sample of quasars. We describe the motivation, design and
implementation of this program, and outline the science impact expected from
the resulting data for RM and general quasar science.Comment: 25 pages, submitted to ApJS; project website at http://www.sdssrm.or
The Sloan Digital Sky Survey Reverberation Mapping project : composite lags at z β€ 1
Funding: STFC grant ST/M001296/1 (KH).We present composite broad-line region (BLR) reverberation mapping lag measurements for HΞ±, HΞ², He II Ξ»4686, and Mg II for a sample of 144, z β² 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for HΞ±) and βΌ0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg II, HΞ±, HΞ², and He II. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, HΞ± shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size-luminosity relation based on HΞ². The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping dataPostprintPeer reviewe
Environmental enrichment intervention for Rett syndrome: An individually randomised stepped wedge trial
Background: Rett syndrome is caused by a pathogenic mutation in the MECP2 gene with major consequences for motor and cognitive development. One of the effects of impaired MECP2 function is reduced production of Brain Derived Neurotrophic Factor (BDNF), a protein required for normal neuronal development. When housed in an enriched environment, MECP2 null mice improved motor abilities and increased levels of BDNF in the brain. We investigated the effects of environmental enrichment on gross motor skills and blood BDNF levels in girls with Rett syndrome. Methods: A genetically variable group of 12 girls with a MECP2 mutation and younger than 6 years participated in a modified individually randomised stepped wedge design study. Assessments were conducted on five occasions, two during the baseline period and three during the intervention period. Gross motor function was assessed using the Rett Syndrome Gross Motor Scale (maximum score of 45) on five occasions, two during the baseline period and three during the intervention period. Blood levels of BDNF were measured at the two baseline assessments and at the end of the intervention period. The intervention comprised motor learning and exercise supplemented with social, cognitive and other sensory experiences over a six-month period. Results: At the first assessment, the mean (SD) age of the children was 3 years (1 year 1 month) years ranging from 1 year 6 months to 5 years 2 months. Also at baseline, mean (SD) gross motor scores and blood BDNF levels were 22.7/45 (9.6) and 165.0 (28.8) ng/ml respectively. Adjusting for covariates, the enriched environment was associated with improved gross motor skills (coefficient 8.2, 95%CI 5.1, 11.2) and a 321.4 ng/ml (95%CI 272.0, 370.8) increase in blood BDNF levels after 6 months of treatment. Growth, sleep quality and mood were unaffected. Conclusions: Behavioural interventions such as environmental enrichment can reduce the functional deficit in Rett syndrome, contributing to the evidence-base for management and further understanding of epigenetic mechanisms. Environmental enrichment will be an important adjunct in the evaluation of new drug therapies that use BDNF pathways because of implications for the strengthening of synapses and improved functioning. Trial registration: ACTRN12615001286538
The Sloan Digital Sky Survey Reverberation Mapping Project: First broad-line HΞ² and Mg II lags at z β³ 0.3 from six-month spectroscopy
Support for the work of Y.S. was provided by NASA through Hubble Fellowship grant number HST-HF-51314, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. K.H. acknowledges support from UK Science and Technology Facilities Council (STFC) grant ST/M001296/1. C.J.G. and W.N.B. acknowledge support from NSF grant AST-1517113 and the V.M. Willaman Endowment. B.M.P. is grateful for support from the National Science Foundation through grant AST-1008882. K.D.D. is supported by an NSF AAPF fellowship awarded under NSF grant AST-1302093. J.R.T. acknowledges support from NASA through Hubble Fellowship grant HST-HF-51330 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract NAS 5-26555. M.S. acknowledges support from the China Scholarship Council (No. [2013]3009). L.C.H. is supported by the Chinese Academy of Science through grant No. XDB09030102 (Emergence of Cosmological Structures) from the strategic Priority Research Program, and from the National Natural Science Foundation of China through grant No. 11473002. L.J. acknowledges the support from a 985 project at Peking University. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.Reverberation mapping (RM) measurements of broad-line region (BLR) lags in z > 0.3 quasars are important for directly measuring black hole masses in these distant objects, but so far there have been limited attempts and success given the practical difficulties of RM in this regime. Here we report preliminary results of 15 BLR lag measurements from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, a dedicated RM program with multi-object spectroscopy designed for RM over a wide redshift range. The lags are based on the 2014 spectroscopic light curves alone (32 epochs over six months) and focus on the HΞ² and Mg II broad lines in the 100 lowest-redshift (z 0.3 is not yet possible owing to the limitations in our current sample. Our results demonstrate the general feasibility and potential of multi-object RM for z > 0.3 quasars.Publisher PDFPeer reviewe
The Sloan Digital Sky Survey Reverberation Mapping Project: HΞ± and HΞ² reverberation measurements from first-year spectroscopy and photometry
Funding: UK Sciences and Technology Facilities Council STFC grant ST/M001296/1 (KH).We present reverberation mapping results from the first year of combined spectroscopic and photometric observations of the Sloan Digital Sky Survey Reverberation Mapping Project. We successfully recover reverberation time delays between the g+i band emission and the broad HΞ² emission line for a total of 44 quasars, and for the broad HΞ± emission line in 18 quasars. Time delays are computed using the JAVELIN and CREAM software and the traditional interpolated cross-correlation function (ICCF): using well-defined criteria, we report measurements of 32 HΞ² and 13 HΞ± lags with JAVELIN, 42 HΞ² and 17 HΞ± lags with CREAM, and 16 HΞ² and eight HΞ± lags with the ICCF. Lag values are generally consistent among the three methods, though we typically measure smaller uncertainties with JAVELIN and CREAM than with the ICCF, given the more physically motivated light curve interpolation and more robust statistical modeling of the former two methods. The median redshift of our HΞ²-detected sample of quasars is 0.53, significantly higher than that of the previous reverberation mapping sample. We find that in most objects, the time delay of the HΞ± emission is consistent with or slightly longer than that of HΞ². We measure black hole masses using our measured time delays and line widths for these quasars. These black hole mass measurements are mostly consistent with expectations based on the local β relationship, and are also consistent with single-epoch black hole mass measurements. This work increases the current sample size of reverberation-mapped active galaxies by about two-thirds and represents the first large sample of reverberation mapping observations beyond the local universe (zΒ <Β 0.3).PostprintPeer reviewe
Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2
BACKGROUND: The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. RESULTS: TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. CONCLUSION: The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function
VANG-1 and PRKL-1 Cooperate to Negatively Regulate Neurite Formation in Caenorhabditis elegans
Neuritogenesis is a critical early step in the development and maturation of neurons and neuronal circuits. While extracellular directional cues are known to specify the site and orientation of nascent neurite formation in vivo, little is known about the genetic pathways that block inappropriate neurite emergence in order to maintain proper neuronal polarity. Here we report that the Caenorhabditis elegans orthologues of Van Gogh (vang-1), Prickle (prkl-1), and Dishevelled (dsh-1), core components of planar cell polarity (PCP) signaling, are required in a subset of peripheral motor neurons to restrict neurite emergence to a specific organ axis. In loss-of-function mutants, neurons display supernumerary neurites that extend inappropriately along the orthogonal anteroposterior (A/P) body axis. We show that autonomous and non-autonomous gene activities are required early and persistently to inhibit the formation or consolidation of growth cone protrusions directed away from organ precursor cells. Furthermore, prkl-1 overexpression is sufficient to suppress neurite formation and reorient neuronal polarity in a vang-1β and dsh-1βdependent manner. Our findings suggest a novel role for a PCPβlike pathway in maintaining polarized neuronal morphology by inhibiting neuronal responses to extrinsic or intrinsic cues that would otherwise promote extraneous neurite formation
Plexin-B2 Negatively Regulates Macrophage Motility, Rac, and Cdc42 Activation
Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2β/β macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2β/β macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing
- β¦