25 research outputs found

    Thyroid Hormone-Induced Cytosol-to-Nuclear Translocation of Rat Liver Nrf2 Is Dependent on Kupffer Cell Functioning

    Get PDF
    L-3,3â€Č,5-triiodothyronine (T3) administration upregulates nuclear factor-E2-related factor 2 (Nrf2) in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl3; 10 mg/kg i.v. 72 h before T3 [0.1 mg/kg i.p.]) or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T3), and determinations were performed 2 h after T3. T3 increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1), catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot) over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl3 treatment prior to T3, an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1)/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T3-induced tumor necrosis factor-α (TNF-α) response was eliminated by previous GdCl3 administration. Similar to GdCl3, apocynin given before T3 significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T3. This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl3 or apocynin given prior to T3, thus hindering Nrf2 activation

    Thyroid hormone administration induces rat liver Nrf2 activation: Suppression by N-acetylcysteine pretreatment

    No full text
    Background: Oxidative stress associated with 3,3â€Č,5-triiodo-l- thyronine (T3)-induced calorigenesis upregulates the hepatic expression of mediators of cytoprotective mechanisms. The aim of this study was to evaluate the hypothesis that in vivo T3 administration triggers a redox-mediated translocation of the cytoprotective nuclear transcription factor erythroid 2-related factor 2 (Nrf2) from the cytosol to the nucleus in rat liver. Such translocation of transcription factors is considered to be an activating step. Materials and Methods: The effect of T3 administration in the presence and absence of N-acetylcysteine (NAC) on cytosol-to-nuclear translocation of Nrf2 was evaluated, with inhibition of this process by NAC taken as evidence that the process was redox mediated. Male Sprague-Dawley rats weighing 180-200 g were given a single intraperitoneal dose of 0.1 mg T3/kg. Another group of rats were given the same dose of T3 and were also pretreated with NAC (0.5 g/kg) at 0.5 hour befor

    Effect of sorafenib on murine liver regeneration

    No full text
    Hepatocellular carcinoma (HCC) is a common cause of cancer-related death. Sorafenib prolongs survival of patients with advanced disease and is approved for the systemic treatment of unresectable HCC. It possesses antiangiogenic and antiproliferative properties by way of inhibition of the receptor tyrosine kinases vascular endothelial growth factor receptor 2 (VEGFR-2) and platelet-derived growth factor receptor-beta 1/2 (PDGFR-ÎČ) and the kinase RAF. Sorafenib represents a candidate compound for adjuvant therapy in HCC patients. The aim of our study was to investigate whether sorafenib affects liver regeneration. C57BL6 mice received sorafenib orally at 30 mg/kg/day or its vehicle either for 14 days until the day before hepatectomy or starting the day after surgery or both. Animals were sacrificed 24, 72, and 120 hours after hepatectomy. Liver regeneration was calculated as a percent of initial liver weight. Bromodeoxyuridine (BrdU) incorporation and phospho-extracellular signal-regulated kinase (pERK1/2) were determined by immunohistochemistry on liver sections. VEGF-A, PDGF-BB, and hepatocyte growth factor (HGF) levels were measured in liver tissue homogenates. Histological analysis of scar tissue was performed. Treatment stopped 1 day before surgery had no impact on liver regeneration. Continuous sorafenib treatment and treatment started 1 day after surgery had statistically significant effects on liver regeneration at 120 hours compared to vehicle-treated control animals (72% ± 12 versus control 88% ± 15 and 70% ± 13 versus control 86% ± 5 at 120 hours, both P ≀ 0.02). BrdU incorporation showed decreased numbers of positive nuclei in both groups receiving sorafenib after surgery. Phospho-ERK levels were reduced in sorafenib-treated animals. An increase of VEGF-A levels was observed in mice receiving sorafenib. Wound-healing complications were observed in animals receiving sorafenib after surgery and confirmed on histological sections. CONCLUSION: This preclinical study shows that sorafenib did not impact on liver regeneration when ceased before surgery; however, administration after hepatectomy affected late liver regeneration

    Targeting vessels to treat hepatocellular carcinoma

    No full text
    The process of blood vessel proliferation, known as angiogenesis, is essential during embryonic development and organogenesis. In adult life, it participates in normal tissue repair, wound healing, and cyclical growth of the corpus luteum and the endometrium. Crucial as it is, angiogenesis can become pathological, and abnormal angiogenesis contributes to the pathogenesis of inflammatory and neoplasic diseases. The present review highlights the evidence for the role of angiogenesis in HCC (hepatocellular carcinoma) and discusses the increasing importance of inhibitors of angiogenesis in HCC therapy

    Molecular mechanisms in liver ischemic-reperfusion injury and ischemic preconditioning Mecanismos moleculares en el daño por isquemia-reperfusión hepåtica y en el preacondicionamiento isquémico

    No full text
    Ischemia-reperfusion (IR) liver injury is associated with temporary clamping of hepatoduodenal ligament during liver surgery, hypoperfusion shock and graft failure after liver transplantation. Mechanisms of IR liver injury include: i) loss of calcium homeostasis, ii) reactive oxygen and nitrogen species generation, iii) changes in microcirculation, iv) Kupffer cell activation, and (v) complement activation. Pre-exposure of the liver to transient ischemia increases the tolerance to IR injury, a phenomenon known as hepatic ischemic preconditioning (IP). IP involves: i) recovery of the energy supply and calcium, sodium and pH homeostasis, ii) enhancement in the antioxidant potential, and iii) expression of multiple stress-response proteins, including acute phase proteins, heat shock proteins, and heme oxygenase. These observations and preliminary studies in humans give a rationale for the assessment of IP in minimizing or preventing IR injury during surgery and non surgical conditions o

    Hormonal pretreatment preserves liver regenerative capacity and minimizes inflammation after partial hepatectomy

    No full text
    Introduction. The treatment of brain dead donors with combined hormonal resuscitation protocols, including methylprednisolone (MP) and triiodothyronine (T3), among others, was developed to increase the viability and function of transplanted organs, primarily heart and lung. Even when it has regarded successful results in term of donors and organs recovery, its effects over specific parameters in organs like the liver are unknown.Material and methods. Male Sprague-Dawley rats were pretreated with MP (0.34 mg/kg) and/or T3 (0.05 mg/kg) or their vehicles, and then subjected to partial hepatectomy of 70%. Three experimental groups and their respective controls were conformed: a. T3; b. NaOH; c. MP; d. vMP; e. MP+T3 and f. vMP+NaOH. The groups were evaluated at 0, 16, 24, 72 and 120 h post surgery. The effects of this protocol on regeneration, liver mass recovery, liver injury, oxidative stress and liver function were analyzed.Results. MP+T3 pretreatment does not deleteriously affect liver regeneration after partial hepatectomy, as shown in the curve of total mass recovery, Ki67 staining and mitosis counting, and does not alter liver function. In addition, the treatment modestly decreases oxidative stress and liver injury, as evidenced by transaminases levels, histological analysis and oxidized proteins content.Conclusion. These preclinical results indicate that MP+T3 is harmless for liver tissue regeneration post hepatectomy and additionally exhibits anti-inflammatory and antioxidant effects; therefore, it would not be contraindicated for the treatment of multiorgan donors in brain death and particularly, if the occurrence of small for size syndrome is suspected

    Insight on ALPPS - Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy - mechanisms: activation of mTOR pathway

    No full text
    Background: ALPPS procedure has been introduced to increase the volume of future liver remnant. The mechanisms underlying the accelerated regeneration observed with ALPPS are unknown. It was hypothesized that AMPK/mTOR is activated as an integrating pathway for metabolic signals leading to proliferation and cell growth. Our aim was to analyze increase in liver volume, proliferation parameters and expression of AMPK/mTOR pathway-related molecules in patients undergoing ALPPS. Methods: A single center prospective study of patients undergoing ALPPS was performed from 2013 to 2015. Liver and serum samples, clinical laboratory results and CT-scan data were obtained. ELISA, Ki-67 immunostaining and qRT-PCR were performed in deportalized and remnant liver tissue in both stages of the procedure. Results: 11 patients were enrolled. Remnant liver volume increased 112 +/- 63% (p < 0.05) in 9.1 +/- 1.6 days. Proliferation-related cytokines IL-6, TNF-alpha, HGF and EGF significantly increased, while higher Ki67 immunostaining and cyclin D expression were observed in remnant livers after ALPPS. mTOR, S6K1, 4E-BP1, TSC1 and TSC2 expression were significantly increased in remnant livers at second stage, while AMPK and Akt increased only in deportalized liver samples. Conclusion: Rapid liver regeneration with ALPPS might be associated with hepatocyte proliferation induced by mTOR pathway activation.Fondecyt: 113027

    Ablation of the tumor suppressor histidine triad nucleotide binding protein 1 is protective against hepatic ischemia/reperfusion injury

    No full text
    The identification of cellular pathways capable of limiting ischemia/reperfusion (I/R) injury remains a frontier in medicine, and its clinical relevance is urgent. Histidine triad nucleotide binding protein 1 (HINT1) is a tumor suppressor that influences apoptosis. Because apoptotic pathways are a feature of I/R injury, we asked whether Hint1 influences hepatic I/R injury. Hint1(-/-) and C57BL/6 mice were subjected to 70% liver ischemia followed by reperfusion for 3 or 24 hours or to a sham operation. The serum aminotransferase levels, histological lesions, apoptosis, reactive oxygen species, and expression of B cell lymphoma 2-associated X protein (Bax), heme oxygenase 1 (HO-1), interleukin-6 (IL-6), IL-10, tumor necrosis factor-a, Src, nuclear factor kappa B (p65/RelA), and c-Jun were quantified. The responses to toll-like receptor ligands and nicotinamide adenine dinucleotide phosphate oxidase activity in Kupffer cells were compared in Hint1(-/-) mice and C57BL/6 mice. After I/R, the levels of serum aminotransferases, parenchymal necrosis, and hepatocellular apoptosis were significantly lower in Hint1(-/-) mice versus control mice. Furthermore, Bax expression decreased more than 2-fold in Hint1(-/-) mice, and the increases in reactive oxygen species and HO-1 expression that were evident in wild-type mice after I/R were absent in Hint1(-/-) mice. The phosphorylation of Src and the nuclear translocation of p65 were increased in Hint1(-/-) mice, whereas the nuclear expression of phosphorylated c-Jun was decreased. The levels of the protective cytokines IL-6 and IL-10 were increased in Hint1(-/-) mice. These effects increased survival after I/R in mice lacking Hint1. Hint1(-/-) Kupffer cells were less activated than control cells after stimulation with lipopolysaccharides. CONCLUSION: The Hint1 protein influences the course of I/R injury, and its ablation in Kupffer cells may limit the extent of the injury
    corecore