195 research outputs found

    Numerical simulation of fracture pattern development and implications for fuid flow

    No full text
    Simulations are instrumental to understanding flow through discrete fracture geometric representations that capture the large-scale permeability structure of fractured porous media. The contribution of this thesis is threefold: an efficient finite-element finite-volume discretisation of the advection/diffusion flow equations, a geomechanical fracture propagation algorithm to create fractured rock analogues, and a study of the effect of growth on hydraulic conductivity. We describe an iterative geomechanics-based finite-element model to simulate quasi-static crack propagation in a linear elastic matrix from an initial set of random flaws. The cornerstones are a failure and propagation criterion as well as a geometric kernel for dynamic shape housekeeping and automatic remeshing. Two-dimensional patterns exhibit connectivity, spacing, and density distributions reproducing en echelon crack linkage, tip hooking, and polygonal shrinkage forms. Differential stresses at the boundaries yield fracture curving. A stress field study shows that curvature can be suppressed by layer interaction effects. Our method is appropriate to model layered media where interaction with neighbouring layers does not dominate deformation. Geomechanically generated fracture patterns are the input to single-phase flow simulations through fractures and matrix. Thus, results are applicable to fractured porous media in addition to crystalline rocks. Stress state and deformation history control emergent local fracture apertures. Results depend on the number of initial flaws, their initial random distribution, and the permeability of the matrix. Straightpath fracture pattern simplifications yield a lower effective permeability in comparison to their curved counterparts. Fixed apertures overestimate the conductivity of the rock by up to six orders of magnitude. Local sample percolation effects are representative of the entire model flow behaviour for geomechanical apertures. Effective permeability in fracture dataset subregions are higher than the overall conductivity of the system. The presented methodology captures emerging patterns due to evolving geometric and flow properties essential to the realistic simulation of subsurface processes

    On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics

    Get PDF
    This paper discusses the reproduction of the square root singularity in quarter-point tetrahedral (QPT) finite elements. Numerical results confirm that the stress singularity is modeled accurately in a fully unstructured mesh by using QPTs. A displacement correlation (DC) scheme is proposed in combination with QPTs to compute stress intensity factors (SIF) from arbitrary meshes, yielding an average error of 2ā€“3%. This straightforward method is computationally cheap and easy to implement. The results of an extensive parametric study also suggest the existence of an optimum mesh-dependent distance from the crack front at which the DC method computes the most accurate SIFs

    Queries That Mothers of Twins Put to Their Doctors

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67993/2/10.1177_000992287501400704.pd

    A finite element framework for modeling internal frictional contact in three-dimensional fractured media using unstructured tetrahedral meshes

    Get PDF
    AbstractThis paper introduces a three-dimensional finite element (FE) formulation to accurately model the linear elastic deformation of fractured media under compressive loading. The presented method applies the classic Augmented Lagrangian(AL)-Uzawa method, to evaluate the growth of multiple interacting and intersecting discrete fractures. The volume and surfaces are discretized by unstructured quadratic triangle-tetrahedral meshes; quarter-point triangles and tetrahedra are placed around fracture tips. Frictional contact between crack faces for high contact precisions is modeled using isoparametric integration point-to-integration point contact discretization, and a gap-based augmentation procedure. Contact forces are updated by interpolating tractions over elements that are adjacent to fracture tips, and have boundaries that are excluded from the contact region. Stress intensity factors are computed numerically using the methods of displacement correlation and disk-shaped domain integral. A novel square-root singular variation of the penalty parameter near the crack front is proposed to accurately model the contact tractions near the crack front. Tractions and compressive stress intensity factors are validated against analytical solutions. Numerical examples of cubes containing one, two, twenty four and seventy interacting and intersecting fractures are presented

    The Community Trend in Training of Child Psychiatrists

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67841/2/10.1177_000992286900800201.pd

    A disk-shaped domain integral method for the computation of stress intensity factors using tetrahedral meshes

    Get PDF
    A novel domain integral approach is introduced for the accurate computation of pointwise J-integral and stress intensity factors (SIFs) of 3D planar cracks using tetrahedral elements. This method is efficient and easy to implement, and does not require a structured mesh around the crack front. The method relies on the construction of virtual disk-shaped integral domains at points along the crack front, and the computation of domain integrals using a series of virtual triangular and line elements. The accuracy of the numerical results computed for through-the-thickness, penny-shaped, and elliptical crack configurations has been validated by using the available analytical formulations. The average error of computed SIFs remains below 1% for fine meshes, and 2ā€“3% for coarse ones. The results of an extensive parametric study suggest that there exists an optimum mesh-dependent domain radius at which the computed SIFs are the most accurate. Furthermore, the results provide evidence that tetrahedral elements are efficient, reliable and robust instruments for accurate linear elastic fracture mechanics calculations

    Medicine and the Pediatrician in Today's Poland

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68109/2/10.1177_000992287501401008.pd

    Quantification of fracture interaction using stress intensity factor variation maps

    Get PDF
    Accurate and flexible models of fracture interaction are sought after in the fields of mechanics and geology. Stress intensity factors (SIFs) quantify the energy concentrated at the fracture tips and are perturbed from their isolated values when two fractures are close to one another. Using a three-dimensional finite element fracture mechanics code to simulate static fractures in tension and compression, interaction effects are examined. SIF perturbations are characterized by introducing three interaction measures: the circumferential and maximum SIF perturbation provide the ā€œmagnitudeā€ of the effect of interaction, and the amplification to shielding ratio quantifies the balance between increased and decreased SIFs along the tip. These measures are used to demonstrate the change in interaction with fracture separation and to find the separation at which interaction becomes negligible. Interaction maps are constructed by plotting the values of the interaction measures for a static fracture as a second fracture is moved around it. These maps are presented for several common fracture orientations in tension. They explore interaction by highlighting regions in which growth is more likely to occur and where fractures will grow into nonplanar geometries. Interaction maps can be applied to fracture networks with multiple discontinuities to analyze the effect of geometric variations on fracture interaction

    Simultaneous oil recovery and residual gas storage: A pore-level analysis using in-situ X-ray micro-tomography

    Get PDF
    We imaged sandstone cores at residual gas saturation (Sgr) with synchrotron radiation at a nominal resolution of (9 Ī¼m)3. We studied two three-phase flooding sequences: (1) gas injection into a core containing oil and initial water followed by a waterflood (gw process); (2) gas injection into a waterflooded core followed by another waterflood (wgw process). In the gw flood we measured a significantly higher Sgr (=20.6%; Sgr in the wgw flood was 5.3%) and a significantly lower residual oil saturation (Sor; Sor in the gw flood was 21.6% and Sor in the wgw flood was 29.3%). We also studied the size distribution of individual trapped clusters in the pore space. We found an approximately power-law distribution N āˆ sāˆ’Ļ„ with an exponent Ļ„ = 2.02ā€“2.03 for the residual oil clusters and Ļ„ = 2.04 for the gas clusters in the gw flood. Ļ„ (=2.32) estimated for the gas clusters in the wgw process was significantly different. Furthermore, we calculated the surface area Aā€“volume V relationships for the clusters. Again an approximate power-law relationship was observed, A āˆVp with p ā‰ˆ 0.75. Moreover, in the gw flood sequence we identified oil layers sandwiched between the gas and water phases; we did not identify such oil layers in the wgw flood.These results have several important implications for oil recovery, carbon geo-sequestration and contaminant transport: (a) significantly more oil can be produced and much more gas can be stored using a gw flood; (b) cluster size distributions for residual oil or gas clusters in three-phase flow are similar to those observed in analogue two-phase flow; (c) there is a large cluster surface area available for dissolution of the residual phase into an aqueous phase; however, this surface area is significantly smaller than predicted by percolation theory (p ā‰ˆ 1), which implies that CO2 dissolution trapping and contamination of aquifers by hazardous organic solvents is slower than expected because of reduced interfacial contact areas

    Evolution of fracture normal stiffness due to pressure dissolution and precipitation

    Get PDF
    The normal stiffness of a fracture is a key parameter that controls, for example, rock mass deformability, the change in hydraulic transmissivity due to stress changes, and the speed and attenuation of seismic waves that travel across the fracture. Non-linearity of normal stiffness as a function of stress is often attributed to plastic yield at discrete contacts. Similar surface-altering mechanisms occur due to pressure solution and precipitation over larger timescales. These processes partition the fracture surfaces into a flattened contact region, and a rough free surface that bounds the void space. Under low loads, contact occurs exclusively over the flattened part, leading to rapid, exponential stiffening. At higher loads, contact occurs over the rough surface fraction, leading to the conventional linear increase of stiffness with stress. It follows that a relationship exists between the history of in situ temperature and stress state of a rock fracture, and its subsequent deformation behavior
    • ā€¦
    corecore