12 research outputs found

    Seismic imaging and modelling of the lithosphere of SW-Iberia.

    Get PDF
    [EN]Data from a closely spaced wide-angle transect has been used to study the middle-to-lower crust and the Moho in SW-Iberia. A low-fold wide-angle stack image reveals a highly heterogeneous seismic signature at lower-crustal levels changing laterally along the profile. The lower crust features an irregular distribution of the reflectivity that can be explained by a heterogeneous distribution of physical properties. The Moho discontinuity also features a high variability in its seismic character that correlates with the different tectonic terranes in the area. A 2D finite difference code was used for solving the elastic wave equation and to provide synthetic wide-angle shots. Relatively simple layer cake model derived from conventional refraction interpretation generates the main events of the shot records. However, these models cannot account for the lateral variability of the seismic signature. In order to obtain more realistic simulations, the velocity model was modified introducing stochastic lensing at different levels within the crust. The Moho was modelled as a 3 km thick layered structure. The resulting average velocity models include a high velocity layer at mid-crustal depth, a highly reflective lower crust and a relatively thin horizontal Moho. This heterogeneous model can be achieved by lensing within the crust, a layered mafic intrusion and a strongly laminated lower crust and Moho

    Imaging the lithospheric structure of the Central Iberian Zone

    Get PDF
    [EN]This presentation includes an image of the structure of the crust and upper mantle in the Central Iberian Zone and across the Central Syste

    Subduction-driven recycling of continental margin lithosphere.

    Get PDF
    [EN]Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood1. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts2,3,4,5. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region6,7; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis8,9 finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere–asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc8,10, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc11. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones12,13,14,15,16,17

    Deep seismic exploration of the Iberian Microplate

    Get PDF
    [EN]This presentation was a key-note lecture at the International Symposium on Deep Exploration and Practices. It describes the acquisition of controlled source seismic data in the Iberian Peninsula during the last decade

    A wide-angle upper mantle reflector in SW Iberia: Some constraints on its nature.

    No full text
    [EN]Deep and fast wide-angle reflection arrivals observed at offsets over 180 km, and over a reduced time interval of 1–1.5 s, have been observed in a seismic experiment shot across SW Iberia as part of the IBERSEIS project. Using different modelling approaches, these reflections have been found to be consistent with a heterogeneous gradient zone located at 61–72 km depth that features an absolute P-wave velocity contrast from 8.2 to 8.3 km/s. Paradoxically, this interface has not been observed in coincident vertical incidence data, probably due to the change in the reflection coefficient with decreasing incidence angles, the lack of energy at high recording times for the near-vertical (vibroseis) data, and/or the different location of the CDPs in both experiments. Although the mantle is acknowledged to be highly heterogeneous and mantle lithologies are capable of giving impedance contrasts high enough as to be observed in seismic data, it is often seen as transparent from a seismic point of view. The short wavelength of mantle compositional heterogeneities is probably what hinders their identification with active source seismic data and only big and sharp discontinuities are imaged in vertical incidence experiments whereas regional transitional boundaries may be also observed at high incidence angles. Accordingly, we propose that deep reflectivity observed in SW Iberia must correspond to a regional–continental scale feature, not sharp enough as to be seen with vertical incidence energy. This feature, already identified in previous DSS experiments carried out in Iberia, has a depth, a P-wave velocity contrast and a transitional nature that match the characteristics proposed for the spinel-lherzolite to garnet-lherzolite phase transition, i.e. the Hales interface or gradient zone. This boundary is relatively narrow (at least 2–3 kb) in enriched mantle and appears deeper and along wider intervals when the mantle is depleted. In addition, it is a worldwide scale boundary already identified over large areas with different types of datasets. The variability in depth and sharpness of this interface, which is related to mantle chemistry, constrains the type of seismic techniques that should be used to identify it

    Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA

    Get PDF
    [EN]The size, frequency, and intensity of volcanic eruptions are strongly controlled by the volume and connectivity of magma within the crust. Several geophysical and geochemical studies have produced a comprehensive model of the magmatic system to depths near 7 km beneath Mount St. Helens (Washington State, USA), currently the most active volcano in the Cascade Range. Data limitations have precluded imaging below this depth to observe the entire primary shallow magma reservoir, as well as its connection to deeper zones of magma accumulation in the crust. The inversion of P and S wave traveltime data collected during the active-source component of the iMUSH (Imaging Magma Under St. Helens) project reveals a high P-wave (Vp)/S-wave (Vs) velocity anomaly beneath Mount St. Helens between depths of 4 and 13 km, which we interpret as the primary upper–middle crustal magma reservoir. Beneath and southeast of this shallow reservoir, a low Vp velocity column extends from 15 km depth to the Moho. Deep long-period events near the boundary of this column indicate that this anomaly is associated with the injection of magmatic fluids. Southeast of Mount St. Helens, an upper–middle crustal high Vp/Vs body beneath the Indian Heaven Volcanic Field may also have a magmatic origin. Both of these high Vp/Vs bodies are at the boundaries of the low Vp middle–lower crustal column and both are directly above high Vp middle–lower crustal regions that may represent cumulates associated with recent Quaternary or Paleogene–Neogene Cascade magmatism. Seismicity immediately following the 18 May 1980 eruption terminates near the top of the inferred middle–lower crustal cumulates and directly adjacent to the inferred middle–lower crustal magma reservoir. These spatial relationships suggest that the boundaries of these high-density cumulates play an important role in both vertical and lateral transport of magma through the crust

    Seismic imaging and modelling of the lithosphere of SW-Iberia.

    Get PDF
    [EN]Data from a closely spaced wide-angle transect has been used to study the middle-to-lower crust and the Moho in SW-Iberia. A low-fold wide-angle stack image reveals a highly heterogeneous seismic signature at lower-crustal levels changing laterally along the profile. The lower crust features an irregular distribution of the reflectivity that can be explained by a heterogeneous distribution of physical properties. The Moho discontinuity also features a high variability in its seismic character that correlates with the different tectonic terranes in the area. A 2D finite difference code was used for solving the elastic wave equation and to provide synthetic wide-angle shots. Relatively simple layer cake model derived from conventional refraction interpretation generates the main events of the shot records. However, these models cannot account for the lateral variability of the seismic signature. In order to obtain more realistic simulations, the velocity model was modified introducing stochastic lensing at different levels within the crust. The Moho was modelled as a 3 km thick layered structure. The resulting average velocity models include a high velocity layer at mid-crustal depth, a highly reflective lower crust and a relatively thin horizontal Moho. This heterogeneous model can be achieved by lensing within the crust, a layered mafic intrusion and a strongly laminated lower crust and Moho

    Geophysical model of the lithosphere across the Variscan Belt of SW-Iberia: Multidisciplinary assessment

    Get PDF
    [EN]A multidisciplinary geophysical study along a large seismic transect in the SW-Iberian Peninsula has been carried out. This study integrates the crustal structure, geometry and composition obtained from normal incidence and wide-angle seismic reflection data with other observables (geoid, gravity and topography). The internal architecture of the lithosphere across the Variscan Orogen of SW-Iberia is constrained by the 300 km long high resolution deep normal seismic reflection IBERSEIS Transect. The most prominent feature imaged by the seismic survey is the Iberseis Reflective Body (IRB), a 140 km long high amplitude reflective body located in the middle crust of the northern half of the transect. The seismic velocity (Vp) distribution within the crust and the upper mantle is constrained by two wide-angle seismic transects acquired in the same area. The velocity models show a complex crust, with a specially complex middle crust, which features higher velocities than the average continental crust. Also the wide-angle data revealed that the IRB is characterized by high velocities. This feature was then interpreted as sill-like structure built up by a series of mafic intrusions. Therefore, a key issue is to study if this relatively mafic crust is consistent with other geophysical observables. Based on the velocity models, two lithospheric density models have been derived along the IBERSEIS wide-angle transects. The geoid, gravity and topography response of these models have been calculated using a finite elements code that solves, simultaneously, the geopotential, lithostatic, and heat flow equations. The resulting values are then compared with the measured observables and the crustal and lithospheric mantle geometry and density is modified until the best fit is obtained. The initial density models calculated from the seismic data adjust quite well to the real potential field data. However, minor modifications have been required in order to properly fit the observables. The final density models are consistent with the existence of relatively high density bodies in the mid-crust providing further support to the seismic interpretation. In addition, they place new constraints on the location of the lithosphere–asthenosphere boundary and on the tectonic evolution of SW-Iberia
    corecore