55 research outputs found

    Movimiento de contracultura: el movimiento hippie

    Get PDF
    Treball Final de Grau en Humanitats: Estudis Interculturals. Codi: HU1036. Curs acadèmic 2017/2018A mediados de la década de los años sesenta, en los años de prosperidad económica y política en América, surge, en las generaciones más jóvenes, un movimiento social denominado Contracultura, que evolucionó durante toda una década con el fin de representar a toda esa generación, del mismo modo que había hecho la Generación Beat hacía ya más de una década. Parte de esta joven generación reivindicativa, formó el Movimiento de Underground, además del Movimiento Hippie, quien creía en la espiritualidad oriental, en la vida comunal y en el amor libre, además de promover el triunfo por la paz. Sin embargo, también hubo una fracción de esta nueva generación de jóvenes que derivó en el radicalismo, aunque mantenían la idea común de vivir al margen de las normas sociales y políticas que definía el Establishment. Los movimientos contraculturales surgieron a partir de una América dividida por la Guerra de Vietnam (1955-1975), además de la lucha por la igualdad de clases y oportunidades en una sociedad que avanzaba hacia el cambio. Sin embargo, la revolución que llevó a cabo no fue simplemente política, sino a todos los niveles: educativa, espiritual, artística… Con el fin de cambiar el mundo, la Contracultura dejó una indudable e indiscutible huella en la memoria histórica y social, tanto americana como internacional. El legado que los hippies dejaron a la sociedad incluye la visualización de minorías y partes marginadas de la sociedad, como las mujeres, los negros, los gays, los artistas… Gracias a esta nueva manera de ver el mundo surgió toda una nueva sociedad, además de una nueva manera de concebir los movimientos sociales, como el Feminismo, los Movimientos Estudiantiles y los Antiglobalización o el Movimiento L.G.T.B.I. Así pues, los sesenta significaron un enriquecimiento, además de una transformación, de la sociedad norteamericana que todavía hoy en día sigue presente y activa dentro de la sociedad mundial

    Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in Arabidopsis

    Get PDF
    AbstractCircadian clocks are autoregulatory, endogenous mechanisms that allow organisms, from bacteria to humans, to advantageously time a wide range of activities within 24-hr environmental cycles [1]. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are thought to be important components of the circadian clock in the model plant Arabidopsis[2–5]. The similar circadian phenotypes of lines overexpressing either CCA1 or LHY have suggested that the functions of these two transcription factors are largely overlapping. cca1-1 plants, which lack CCA1 protein, show a short-period phenotype for the expression of several genes when assayed under constant light conditions [5]. This suggests that LHY function is able to only partially compensate for the lack of CCA1 protein, resulting in a clock with a faster pace in cca1-1 plants. We have obtained plants lacking CCA1 and with LHY function strongly reduced, cca1-1 lhy-R, and show that these plants are unable to maintain sustained oscillations in both constant light and constant darkness. However, these plants exhibit some circadian function in light/dark cycles, showing that the Arabidopsis circadian clock is not entirely dependent on CCA1 and LHY activities

    Extracellular vesicles from pristane-treated CD38-deficient mice express an antiinflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice

    Get PDF
    In CD38-deficient (Cd38-/-) mice intraperitoneal injection of pristane induces a lupus-like disease, which is milder than that induced in WT mice, showing significant differences in the inflammatory and autoimmune processes triggered by pristane. Extracellular vesicles (EV) are present in all body fluids. Shed by cells, their molecular make-up reflects that of their cell of origin and/or tissue pathological situation. The aim of this study was to analyze the protein composition, protein abundance, and functional clustering of EV released by peritoneal exudate cells (PECs) in the pristane experimental lupus model, to identify predictive or diagnostic biomarkers that might discriminate the autoimmune process in lupus from inflammatory reactions and/or normal physiological processes. In this study, thanks to an extensive proteomic analysis and powerful bioinformatics software, distinct EV subtypes were identified in the peritoneal exudates of pristane-treated mice: 1) small EV enriched in the tetraspanin CD63 and CD9, which are likely of exosomal origin; 2) small EV enriched in CD47 and CD9, which are also enriched in plasma-membrane, membrane-associated proteins, with an ectosomal origin; 3) small EV enriched in keratins, ECM proteins, complement/coagulation proteins, fibrin clot formation proteins, and endopetidase inhibitor proteins. This enrichment may have an inflammation-mediated mesothelial-tomesenchymal transition origin, representing a protein corona on the surface of peritoneal exudate EV; 4) HDL-enriched lipoprotein particles. Quantitative proteomic analysis allowed us to identify an anti-inflammatory, Annexin A1- enriched pro-resolving, neutrophil protein signature, which was more prominent in EV from pristane-treated Cd38-/- mice, and quantitative differences in the protein cargo of the ECM-enriched EV from Cd38-/- vs WT mice. These differences are likely to be related with the distinct inflammatory outcome shown by Cd38-/- vs WT mice in response to pristane treatment. Our results demonstrate the power of a hypothesis-free and data-driven approach to transform the heterogeneity of the peritoneal exudate EV from pristanetreated mice in valuable information about the relative proportion of different EV in a given sample and to identify potential protein markers specific for the different small EV subtypes, in particular those proteins defining EV involved in the resolution phase of chronic inflammation.Proyecto del plan estatal, Ministerio de Ciencia e Innovacion PT13/0001/011CSIC PT17/0019/0010 PID2020-119567RB-I0

    The Functional Interplay between Protein Kinase CK2 and CCA1 Transcriptional Activity Is Essential for Clock Temperature Compensation in Arabidopsis

    Get PDF
    Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double–ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2) are essential for clock temperature compensation in Arabidopsis

    Circadian mechanisms of clock function and regulation in Arabidopsis thaliana

    No full text
    Trabajo presentado al International Symposium on Plant Photobiology (ISPP), celebrado en Barcelona (España) del 3 al 8 de junio de 2019

    Understanding how plants tell time

    No full text
    Trabajo presentado en PGEC Seminars, serie de seminarios del Plant Gene Expression Center, en la Universidad de California (EEUU) el 17 de noviembre de 2022

    Cellular and molecular mechanisms of circadian clock function in Arabidopsis thaliana

    No full text
    Resumen del trabajo presentado al Congreso 'At the Forefront of Plant Research', celebrado en Barcelona (España) del 6 al 8 de mayo de 2019.The circadian clock is a timing mechanism able to coordinate the rhythms of multiple biological processes. In plants, the circadian function is critical for proper fitness and survival. Knowing how the circadian system works provides an efficient tool to understand the temporal compartmentalization of plant physiology, development and metabolism in synch with the daily and seasonal environmental changes. In our lab, we have recently discovered the molecular mechanism controlling the rhythms of transcript initiation and elongation as well as the rhythms in nascent RNAs. The mechanism relies of a multifunctional clock protein complex that recruits the RNA Polymerase II and the transcript elongation FACT complex to rhythmically co-occupy clock target loci. Our findings explain how genome readout of environmental information ultimately results in rhythmic changes of gene expression. We have also recently found that the circadian clock, through the function of the clock component TOC1 (TIMING OF CAB EXPRESSION1/PSEUDO RESPONSE REGULATOR1), drives the speed of the cell cycle in Arabidopsis. By regulating the DNA pre-replicative machinery, the circadian clock modulates cell division during proliferation and somatic ploidy during differentiation and thus controls plant growth in resonance with the environment

    Organ-specificity at the core of the Arabidopsis circadian clock

    No full text
    Trabajo presentado a la Gordon Research Conference Chronobiology, celebrada en Castelldefels, Barcelona (España) del 23 al 28 de junio de 2019
    corecore