55 research outputs found
Movimiento de contracultura: el movimiento hippie
Treball Final de Grau en Humanitats: Estudis Interculturals. Codi: HU1036. Curs acadèmic 2017/2018A mediados de la década de los años sesenta, en los años de prosperidad
económica y política en América, surge, en las generaciones más jóvenes, un
movimiento social denominado Contracultura, que evolucionó durante toda una década
con el fin de representar a toda esa generación, del mismo modo que había hecho la
Generación Beat hacía ya más de una década. Parte de esta joven generación
reivindicativa, formó el Movimiento de Underground, además del Movimiento Hippie,
quien creía en la espiritualidad oriental, en la vida comunal y en el amor libre, además
de promover el triunfo por la paz. Sin embargo, también hubo una fracción de esta
nueva generación de jóvenes que derivó en el radicalismo, aunque mantenían la idea
común de vivir al margen de las normas sociales y políticas que definía el
Establishment.
Los movimientos contraculturales surgieron a partir de una América dividida por
la Guerra de Vietnam (1955-1975), además de la lucha por la igualdad de clases y
oportunidades en una sociedad que avanzaba hacia el cambio. Sin embargo, la
revolución que llevó a cabo no fue simplemente política, sino a todos los niveles:
educativa, espiritual, artística… Con el fin de cambiar el mundo, la Contracultura dejó
una indudable e indiscutible huella en la memoria histórica y social, tanto americana
como internacional.
El legado que los hippies dejaron a la sociedad incluye la visualización de
minorías y partes marginadas de la sociedad, como las mujeres, los negros, los gays, los
artistas… Gracias a esta nueva manera de ver el mundo surgió toda una nueva sociedad,
además de una nueva manera de concebir los movimientos sociales, como el
Feminismo, los Movimientos Estudiantiles y los Antiglobalización o el Movimiento
L.G.T.B.I.
Así pues, los sesenta significaron un enriquecimiento, además de una
transformación, de la sociedad norteamericana que todavía hoy en día sigue presente y
activa dentro de la sociedad mundial
Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in Arabidopsis
AbstractCircadian clocks are autoregulatory, endogenous mechanisms that allow organisms, from bacteria to humans, to advantageously time a wide range of activities within 24-hr environmental cycles [1]. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are thought to be important components of the circadian clock in the model plant Arabidopsis[2–5]. The similar circadian phenotypes of lines overexpressing either CCA1 or LHY have suggested that the functions of these two transcription factors are largely overlapping. cca1-1 plants, which lack CCA1 protein, show a short-period phenotype for the expression of several genes when assayed under constant light conditions [5]. This suggests that LHY function is able to only partially compensate for the lack of CCA1 protein, resulting in a clock with a faster pace in cca1-1 plants. We have obtained plants lacking CCA1 and with LHY function strongly reduced, cca1-1 lhy-R, and show that these plants are unable to maintain sustained oscillations in both constant light and constant darkness. However, these plants exhibit some circadian function in light/dark cycles, showing that the Arabidopsis circadian clock is not entirely dependent on CCA1 and LHY activities
Extracellular vesicles from pristane-treated CD38-deficient mice express an antiinflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice
In CD38-deficient (Cd38-/-) mice intraperitoneal injection of pristane induces a
lupus-like disease, which is milder than that induced in WT mice, showing
significant differences in the inflammatory and autoimmune processes
triggered by pristane. Extracellular vesicles (EV) are present in all body fluids.
Shed by cells, their molecular make-up reflects that of their cell of origin and/or
tissue pathological situation. The aim of this study was to analyze the protein
composition, protein abundance, and functional clustering of EV released by
peritoneal exudate cells (PECs) in the pristane experimental lupus model, to
identify predictive or diagnostic biomarkers that might discriminate the
autoimmune process in lupus from inflammatory reactions and/or normal
physiological processes. In this study, thanks to an extensive proteomic
analysis and powerful bioinformatics software, distinct EV subtypes were identified in the peritoneal exudates of pristane-treated mice: 1) small EV
enriched in the tetraspanin CD63 and CD9, which are likely of exosomal
origin; 2) small EV enriched in CD47 and CD9, which are also enriched in
plasma-membrane, membrane-associated proteins, with an ectosomal origin;
3) small EV enriched in keratins, ECM proteins, complement/coagulation
proteins, fibrin clot formation proteins, and endopetidase inhibitor proteins.
This enrichment may have an inflammation-mediated mesothelial-tomesenchymal
transition origin, representing a protein corona on the surface
of peritoneal exudate EV; 4) HDL-enriched lipoprotein particles. Quantitative
proteomic analysis allowed us to identify an anti-inflammatory, Annexin A1-
enriched pro-resolving, neutrophil protein signature, which was more
prominent in EV from pristane-treated Cd38-/- mice, and quantitative
differences in the protein cargo of the ECM-enriched EV from Cd38-/- vs WT
mice. These differences are likely to be related with the distinct inflammatory
outcome shown by Cd38-/- vs WT mice in response to pristane treatment. Our
results demonstrate the power of a hypothesis-free and data-driven approach
to transform the heterogeneity of the peritoneal exudate EV from pristanetreated
mice in valuable information about the relative proportion of different
EV in a given sample and to identify potential protein markers specific for the
different small EV subtypes, in particular those proteins defining EV involved in
the resolution phase of chronic inflammation.Proyecto del plan estatal, Ministerio de Ciencia e Innovacion PT13/0001/011CSIC PT17/0019/0010
PID2020-119567RB-I0
The Functional Interplay between Protein Kinase CK2 and CCA1 Transcriptional Activity Is Essential for Clock Temperature Compensation in Arabidopsis
Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double–ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2) are essential for clock temperature compensation in Arabidopsis
Circadian mechanisms of clock function and regulation in Arabidopsis thaliana
Trabajo presentado al International Symposium on Plant Photobiology (ISPP), celebrado en Barcelona (España) del 3 al 8 de junio de 2019
Understanding how plants tell time
Trabajo presentado en PGEC Seminars, serie de seminarios del Plant Gene Expression Center, en la Universidad de California (EEUU) el 17 de noviembre de 2022
Cellular and molecular mechanisms of circadian clock function in Arabidopsis thaliana
Resumen del trabajo presentado al Congreso 'At the Forefront of Plant Research', celebrado en Barcelona (España) del 6 al 8 de mayo de 2019.The circadian clock is a timing mechanism able to coordinate the rhythms of multiple biological processes. In plants, the circadian function is critical for proper fitness and survival. Knowing how the circadian system works provides an efficient tool to understand the temporal compartmentalization of plant physiology, development and metabolism in synch with the daily and seasonal environmental changes. In our lab, we have recently discovered the molecular mechanism
controlling the rhythms of transcript initiation and elongation as well as the rhythms in nascent RNAs. The mechanism relies of a multifunctional clock protein complex that recruits the RNA Polymerase II and the transcript elongation FACT complex to rhythmically co-occupy clock target loci. Our findings explain how genome readout of environmental information ultimately results in rhythmic changes of gene expression. We have also recently found that the circadian clock, through the function of the clock component TOC1 (TIMING OF CAB EXPRESSION1/PSEUDO RESPONSE REGULATOR1), drives the speed of the cell cycle in Arabidopsis. By regulating the DNA pre-replicative machinery, the circadian clock modulates cell division during proliferation and somatic ploidy during differentiation and thus controls plant growth in resonance with the environment
Organ-specificity at the core of the Arabidopsis circadian clock
Trabajo presentado a la Gordon Research Conference Chronobiology, celebrada en Castelldefels, Barcelona (España) del 23 al 28 de junio de 2019
- …