4 research outputs found

    Engineering shallow spins in diamond with nitrogen delta-doping

    Full text link
    We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 - 100 nm display long spin coherence times, T2 > 100 \mus at d = 5 nm and T2 > 600 \mus at d \geq 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.Comment: 14 pages, 4 figures, 11 pages of additional supplementary materia

    Revealing quantum Hall states in epitaxial topological half-Heusler semimetal

    Get PDF
    Prediction of topological surface states (TSS) in half-Heusler compounds raises exciting possibilities to realize exotic electronic states and novel devices by exploiting their multifunctional nature. However, an important prerequisite is identification of macroscopic physical observables of the TSS, which has been difficult in these semi-metallic systems due to prohibitively large number of bulk carriers. Here, we introduce compensation alloying in epitaxial thin films as an effective route to tune the chemical potential and simultaneously reduce the bulk carrier concentration by more than two orders of magnitude compared to the parent compound. Linear magnetoresistance is shown to appear as a precursor phase that transmutes into a TSS induced quantum Hall phase on further reduction of the coupling between the surface states and the bulk carriers. Our approach paves the way to reveal and manipulate exotic properties of topological phases in Heusler compounds.Comment: 8 pages, 4 figures. Supplementary Infromation contains 7 sections and 17 figure

    Molecular Ligands Control Superlattice Structure and Crystallite Orientation in Colloidal Quantum Dot Solids

    No full text
    Colloidal quantum dot solids represent a new materials platform that has garnered interest for a variety of electronic, optoelectronic, and photovoltaic applications. In such solids, individual quantum dots must be coupled with each other to facilitate charge transport through the solid. Past improvements on charge transport of colloidal quantum dot solids have been achieved primarily through the control of the interparticle spacing. However, the role of morphological ordering of the crystalline facets of individual quantum dots on the charge transport of the quantum dot solid is unknown. Here, we show for the first time that small passivating ligand molecules around the quantum dots can control the arrangement of different facets of quantum dots within the quantum dot solid. The insights from this study provide important directions for future enhancement in orientation of quantum dots in colloidal quantum dot solids

    THz spectroscopy of self-assembled ErSb Nanowires

    No full text
    We report on self-assembled ErSb nanowires in a GaSb matrix that show a strong polarization-sensitive THz response. The nanowires behave like a polarizer. Their orientation and shape can be engineered by the growth conditions
    corecore