4,680 research outputs found
Bovine Tuberculosis and the Establishment of an Eradication Program in the United States: Role of Veterinarians
The significance of the identification of Mycobacterium bovis as a zoonotic pathogen in 1882 was not initially recognized. After years of research by veterinarians, and other scientists, the importance of M. bovis as a pathogen and the public health ramifications, were appreciated. Veterinarians played pivotal roles in the creation of improved meat and milk inspection, diagnosis of M. bovis infected cattle, and in time, a bovine tuberculosis eradication program that would impact every cattle producer in the country. After overcoming many challenges, the 93-year-long program has decreased disease prevalence from 5% to <0.001%. Today, years of hard work by practitioners, researchers and regulatory officials alike, have yielded a program with a net benefit of almost $160 million per year
Development of a Model of Natural Infection with \u3ci\u3eMycobacterium bovis\u3c/i\u3e in White-Tailed Deer
The objective of this study was to develop a suitable experimental model of natural Mycobacterium bovis infection in white-tailed deer (Odocoileus virginianus), describe the distribution and character of tuberculous lesions, and to examine possible routes of disease transmission. In October 1997, 10 mature female white-tailed deer were inoculated by intratonsilar instillation of 2 3 103 (low dose) or 2 3 105 (high dose) colony forming units (CFU) of M. bovis. In January 1998, deer were euthanatized, examined, and tissues were collected 84 to 87 days post inoculation. Possible routes of disease transmission were evaluated by culture of nasal, oral, tonsilar, and rectal swabs at various times during the study. Gross and microscopic lesions consistent with tuberculosis were most commonly seen in medial retropharyngeal lymph nodes and lung in both dosage groups. Other tissues containing tuberculous lesions included tonsil, trachea, liver, and kidney as well as lateral retropharyngeal, mandibular, parotid, tracheobronchial, mediastinal, hepatic, mesenteric, superficial cervical, and iliac lymph nodes. Mycobacterium bovis was isolated from tonsilar swabs from 8 of 9 deer from both dosage groups at least once 14 to 87 days after inoculation. Mycobacterium bovis was isolated from oral swabs 63 and 80 days after inoculation from one of three deer in the low dose group and none of four deer in the high dose group. Similarly, M. bovis was isolated from nasal swabs 80 and 85 days after inoculation in one of three deer from the low dose group and 63 and 80 days after inoculation from two of four deer in the high dose group. Intratonsilar inoculation with M. bovis results in lesions similar to those seen in naturally infected white-tailed deer; therefore, it represents a suitable model of natural infection. These results also indicate that M. bovis persists in tonsilar crypts for prolonged periods and can be shed in saliva and nasal secretions. These infected fluids represent a likely route of disease transmission to other animals or humans
Improved specificity for detection of Mycobacterium bovis in fresh tissues using IS6110 real-time PCR
<p>Abstract</p> <p>Background</p> <p>Culture of <it>M. bovis </it>from diagnostic specimens is the gold standard for bovine tuberculosis diagnostics in the USA. Detection of <it>M. bovis </it>by PCR in tissue homogenates may provide a simple rapid method to complement bacterial culture. A significant impediment to PCR based assays on tissue homogenates is specificity since mycobacteria other than <it>M. bovis </it>may be associated with the tissues.</p> <p>Results</p> <p>Previously published IS<it>6110 </it>based PCR diagnostic assays, along with one developed in house, were tested against environmental mycobacteria commonly isolated from diagnostic tissues submitted to the National Veterinary Services Laboratory. A real-time PCR assay was developed (IS6110_T) that had increased specificity over other IS<it>6110 </it>based assays. Of the 13 non-tuberculous mycobacteria tested with IS6110_T only <it>M. wolinskyi </it>was positive. Thirty <it>M. bovis </it>infected tissue homogenates and 18 control tissues were used to evaluate the potential for the assay as a diagnostic test. In this small sample, IS6110_T detected 20/30 samples from <it>M. bovis </it>infected animals and 0/18 control tissues.</p> <p>Conclusions</p> <p>The IS6110_T assay provides a PCR based assay system that is compatible with current diagnostic protocols for the detection of <it>M. bovis </it>in the USA and compliments current testing strategies.</p
Mycobacterium bovis: A model pathogen at the interface of livestock, wildlife, and humans
Complex and dynamic interactions involving domestic animals, wildlife, and humans create environments favorable to the emergence of new diseases, or reemergence of diseases in new host species. Today, reservoirs of Mycobacterium bovis, the causative agent of tuberculosis in animals, and sometimes humans, exist in a range of countries and wild animal populations. Free-ranging populations of white-tailed deer in the US, brushtail possum in New Zealand, badger in the Republic of Ireland and the United Kingdom, and wild boar in Spain exemplify established reservoirs of M. bovis. Establishment of these reservoirs is the result of factors such as spillover from livestock, translocation of wildlife, supplemental feeding of wildlife, and wildlife population densities beyond normal habitat carrying capacities. As many countries attempt to eradicate M. bovis from livestock, efforts are impeded by spillback from wildlife reservoirs. It will not be possible to eradicate this important zoonosis from livestock unless transmission between wildlife and domestic animals is halted. Such an endeavor will require a collaborative effort between agricultural, wildlife, environmental, and political interests.Peer Reviewe
Characterization of effector and memory T cell subsets in the immune response to bovine tuberculosis in cattle
Cultured IFN-γ ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses with humans; however, this important subset of lymphocytes is poorly characterized in cattle. Vaccine-elicited cultured IFN-γ ELISPOT responses correlate with protection against bovine tuberculosis in cattle. However, whether this assay measures cattle Tcm responses or not is uncertain. The objective of the present study was to characterize the relative contribution of Tcm (CCR7+, CD62Lhi, CD45RO+), T effector memory (Tem, defined as: CCR7-, CD62Llow/int, CD45RO+), and T effector cells (CCR7-, CD62L-/low, CD45RO-), in the immune response to Mycobacterium bovis. Peripheral blood mononuclear cells (PBMC) from infected cattle were stimulated with a cocktail of M. bovis purified protein derivative, rTb10.4 and rAg85A for 13 days with periodic addition of fresh media and rIL-2. On day 13, cultured PBMC were re-stimulated with medium alone, rESAT-6:CFP10 or PPDb with fresh autologous adherent cells for antigen presentation. Cultured cells (13 days) or fresh PBMCs (ex vivo response) from the same calves were analyzed for IFN-γ production, proliferation, and CD4, CD45RO, CD62L, CD44, and CCR7 expression via flow cytometry after overnight stimulation. In response to mycobacterial antigens, ~75% of CD4+ IFN-γ+ cells in long-term cultures expressed a Tcm phenotype while less than 10% of the ex vivo response consisted of Tcm cells. Upon re-exposure to antigen, long-term cultured cells were highly proliferative, a distinctive characteristic of Tcm, and the predominant phenotype within the long-term cultures switched from Tcm to Tem. These findings suggest that proliferative responses of Tcm cells to some extent occurs simultaneously with reversion to effector phenotypes (mostly Tem). The present study characterizes Tcm cells of cattle and their participation in the response to M. bovis infection
First-principles calculation of the intrinsic aqueous solubility of crystalline druglike molecules
We demonstrate that the intrinsic aqueous solubility of crystalline druglike molecules can be estimated with reasonable accuracy from sublimation free energies calculated using crystal lattice simulations and hydration free energies calculated using the 3D Reference Interaction Site Model (3D-RISM) of the Integral Equation Theory of Molecular Liquids (IET). The solubilities of 25 crystalline druglike molecules taken from different chemical classes are predicted by the model with a correlation coefficient of R = 0.85 and a root mean square error (RMSE) equal to 1.45 log(10) S units, which is significantly more accurate than results obtained using implicit continuum solvent models. The method is not directly parametrized against experimental solubility data, and it offers a full computational characterization of the thermodynamics of transfer of the drug molecule from crystal phase to gas phase to dilute aqueous solution.PostprintPeer reviewe
Evaluation of ethanol vortex ELISA for detection of bovine tuberculosis in cattle and deer
Background: The use of serological assays for diagnosis of bovine tuberculosis (TB) has been intensively studied and use of specific antigens have aided in improving the diagnostic accuracy of the assays. In the present study, we report an in-house enzyme linked immunosorbent assay (ELISA), developed by using ethanol extract of Mycobacterium bovis (M. bovis). The assay, named (ethanol vortex ELISA [EVELISA]), was evaluated for detection of anti- M. bovis antibodies in the sera of cattle and white-tailed deer.
Methods: By using the EVELISA, we tested sera obtained from two species of animals; cattle (n = 62 [uninfected, n = 40; naturally infected, n = 22]) and white-tailed deer (n = 41 [uninfected, n = 25; naturally infected, n = 7; experimentally infected, n = 9]). To detect species specific molecules, components in the ethanol extract were analyzed by thin layer chromatography and western blotting.
Results: Among the tested animals, 77.2% of infected cattle and 87.5% of infected deer tested positive for anti- M. bovis antibody. There were only minor false positive reactions (7.5% in cattle and 0% in deer) in uninfected animals. M. bovis -specific lipids and protein (MPB83) in the ethanol extract were detected by thin layer chromatography and western blotting, respectively.
Conclusion: The results warrant further evaluation and validation of EVELISA for bovine TB diagnosis of traditional and alternative livestock as well as for free-ranging animal species
- …