1,659 research outputs found
Relative motion of satellites exploiting the super-integrability of Kepler's problem
This paper builds upon thework of Palmer and Imre exploring the relative motion of satellites on neighbouring Keplerian orbits.We make use of a general geometrical setting from Hamiltonian systems theory to obtain analytical solutions of the variational Kepler equations in an Earth centred inertial coordinate frame in terms of the relevant conserved quantities: relative energy, relative angular momentum and the relative eccentricity vector. The paper extends the work on relative satellite motion by providing solutions about any elliptic, parabolic or hyperbolic reference trajectory, including the zero angular momentum case. The geometrical framework assists the design of complex formation flying trajectories. This is demonstrated by the construction of a tetrahedral formation, described through the relevant conserved quantities, for which the satellites are on highly eccentric orbits around the Sun to visit the Kuiper belt
Intellectual disability, unusual facial morphology and hand anomalies in sibs
Here we report on a Portuguese family with three sisters who shared moderate intellectual disability, unusual facial morphology (short palpebral fissures; broad nasal tip; thin upper and lower vermillion; broad and pointed chin) and hand anomalies in two of them (short left third and fifth right metacarpals in one case; marked syndactyly between the third and fourth fingers in another). One of the sisters had microcephaly and short stature, and the other two were obese. Obesity and somewhat similar facial features were also present in the otherwise healthy mother. Despite the overlap with several known syndromes (Albright osteodystrophy; Filippi syndrome; Rubinstein-Taybi syndrome; microdeletion 2q37), we suggest this condition is previously unreported, and most likely displays an autosomal recessive pattern of inheritance
A Laser Driven Grating Linac
The fields induced over a grating exposed to plane parallel light are explored. It is shown that acceleration is possible if either the particles travel skew to the grating lines, or if the radiation is falling at a skew angle onto the grating. A general theory of diffraction in this skew case is given. In one particular case numerical solutions are worked out for some deep grating. It is found that accelerating fields larger even than the initial fields can be obtained, the limit being set by resistive losses on the grating surface. Simple calculations are made to see what accelerating fields might be obtained using CO/sub 2/ lasers. Accelerations of 2 or 20 GeV per meter seem possible depending on whether the grating is allowed to be destroyed or not. Power requirements, injection and focussing are briefly discussed and no obvious difficulties are seen. It is concluded, therefore, that the proposed mechanism should be considered as a good candidate for the next generation of particle accelerators
Rate Effects on Timing, Key Velocity, and Finger Kinematics in Piano Performance
We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement âsignaturesâ may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound
Exogenous spatial precuing reliably modulates object processing but not object substitution masking
Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481â507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646â661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance
DADA: data assimilation for the detection and attribution of weather and climate-related events
A new nudging method for data assimilation, delayâcoordinate nudging, is presented. Delayâcoordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a lowâorder chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delayânudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delayâcoordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonalâtoâdecadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures
Evolution of H3N2 Influenza Virus in a Guinea Pig Model
Studies of influenza virus evolution under controlled experimental conditions can provide a better understanding of the consequences of evolutionary processes with and without immunological pressure. Characterization of evolved strains assists in the development of predictive algorithms for both the selection of subtypes represented in the seasonal influenza vaccine and the design of novel immune refocused vaccines. To obtain data on the evolution of influenza in a controlled setting, naĂŻve and immunized Guinea pigs were infected with influenza A/Wyoming/2003 (H3N2). Virus progeny from nasal wash samples were assessed for variation in the dominant and other epitopes by sequencing the hemagglutinin (HA) gene to quantify evolutionary changes. Viral RNA from the nasal washes from infection of naĂŻve and immune animals contained 6% and 24.5% HA variant sequences, respectively. Analysis of mutations relative to antigenic epitopes indicated that adaptive immunity played a key role in virus evolution. HA mutations in immunized animals were associated with loss of glycosylation and changes in charge and hydrophobicity in and near residues within known epitopes. Four regions of HA-1 (75â85, 125â135, 165â170, 225â230) contained residues of highest variability. These sites are adjacent to or within known epitopes and appear to play an important role in antigenic variation. Recognition of the role of these sites during evolution will lead to a better understanding of the nature of evolution which help in the prediction of future strains for selection of seasonal vaccines and the design of novel vaccines intended to stimulated broadened cross-reactive protection to conserved sites outside of dominant epitopes
- âŠ