22 research outputs found

    Epidemiological Evidence for Work Load as a Risk Factor for Osteoarthritis of the Hip: A Systematic Review

    Get PDF
    Osteoarthritis of the hip (OA) is a common degenerative disorder of the joint cartilage that presents a major public health problem worldwide. While intrinsic risk factors (e.g, body mass and morphology) have been identified, external risk factors are not well understood. In this systematic review, the evidence for workload as a risk factor for hip OA is summarized and used to derive recommendations for prevention and further research.Epidemiological studies on workload or occupation and osteoarthritis of the hip were identified through database and bibliography searches. Using pre-defined quality criteria, 30 studies were selected for critical evaluation; six of these provided quantitative exposure data.Study results were too heterogeneous to develop pooled risk estimates by specific work activities. The weight of evidence favors a graded association between long-term exposure to heavy lifting and risk of hip OA. Long-term exposure to standing at work might also increase the risk of hip OA.It is not possible to estimate a quantitative dose-response relationship between workload and hip OA using existing data, but there is enough evidence available to identify job-related heavy lifting and standing as hazards, and thus to begin developing recommendations for preventing hip OA by limiting the amount and duration of these activities. Future research to identify specific risk factors for work-related hip OA should focus on implementing rigorous study methods with quantitative exposure measures and objective diagnostic criteria

    Krebsrisiken bei Feuerwehreinsatzkräften

    No full text

    Night work, chronotype and cortisol at awakening in female hospital employees.

    No full text
    To examine the effect of night shift on salivary cortisol at awakening (C1), 30 min later (C2), and on the cortisol awakening response (CAR, the difference between C2 and C1). We compared shift and non-shift workers with a focus on the impact of worker chronotype. Our study included 66 shift-working females (mean age = 37.3 years, SD = 10.2) and 21 non-shift working females (mean age = 47.0 years, SD = 8.9). The shift workers collected their saliva samples at C1 and C2 on each two consecutive day shifts and night shifts. Non-shift workers collected their samples on two consecutive day shifts. We applied linear mixed-effects models (LMM) to determine the effect of night shift on CAR and log-transformed C1 and C2 levels. LMMs were stratified by chronotype group. Compared to non-shift workers, shift workers before day shifts (i.e. after night sleep) showed lower cortisol at C1 (exp [Formula: see text]=0.58, 95% CI 0.42, 0.81) but not at C2. In shift workers, the CARs after night shifts (i.e. after day sleep) were lower compared to CARs before day shifts ([Formula: see text]= - 11.07, 95% CI - 15.64, - 6.50). This effect was most pronounced in early chronotypes (early: [Formula: see text]= - 16.61, 95% CI - 27.87, - 5.35; intermediate: [Formula: see text]= - 11.82, 95% CI - 18.35, - 5.29; late: [Formula: see text]= - 6.27, 95% CI - 14.28, 1.74). Chronotype did not modify the association between night shift and CAR. In our population of shift workers, there was a mismatch between time of waking up and their natural cortisol peak at waking up (CAR) both during day and night shift duties
    corecore