12 research outputs found

    Co-Application of Statin and Flavonoids as an Effective Strategy to Reduce the Activity of Voltage-Gated Potassium Channels Kv1.3 and Induce Apoptosis in Human Leukemic T Cell Line Jurkat

    No full text
    Voltage-gated potassium channels of the Kv1.3 type are considered a potential new molecular target in several pathologies, including some cancer disorders and COVID-19. Lipophilic non-toxic organic inhibitors of Kv1.3 channels, such as statins and flavonoids, may have clinical applications in supporting the therapy of some cancer diseases, such as breast, pancreas, and lung cancer; melanoma; or chronic lymphocytic leukemia. This study focuses on the influence of the co-application of statins—simvastatin (SIM) or mevastatin (MEV)—with flavonoids 8-prenylnaringenin (8-PN), 6-prenylnarigenin (6-PN), xanthohumol (XANT), acacetin (ACAC), or chrysin on the activity of Kv1.3 channels, viability, and the apoptosis of cancer cells in the human T cell line Jurkat. We showed that the inhibitory effect of co-application of the statins with flavonoids was significantly more potent than the effects exerted by each compound applied alone. Combinations of simvastatin with chrysin, as well as mevastatin with 8-prenylnaringenin, seem to be the most promising. We also found that these results correlate with an increased ability of the statin–flavonoid combination to reduce viability and induce apoptosis in cancer cells compared to single compounds. Our findings suggest that the co-application of statins and flavonoids at low concentrations may increase the effectiveness and safety of cancer therapy. Thus, the simultaneous application of statins and flavonoids may be a new and promising anticancer strategy

    TMPE Derived from Saffron Natural Monoterpene as Cytotoxic and Multidrug Resistance Reversing Agent in Colon Cancer Cells

    No full text
    Terpenes constitute one of the largest groups of natural products. They exhibit a wide range of biological activities including antioxidant, anticancer, and drug resistance modulating properties. Saffron extract and its terpene constituents have been demonstrated to be cytotoxic against various types of cancer cells, including breast, liver, lung, pancreatic, and colorectal cancer. In the present work, we have studied anticancer properties of TMPE, a newly synthesized monoterpene derivative of β-cyclocitral—the main volatile produced by the stigmas of unripe crocuses. TMPE presented selective cytotoxic activity to doxorubicin-resistant colon cancer cells and was identified to be an effective MDR modulator in doxorubicin-resistant cancer cells. Synergy between this derivative and doxorubicin was observed. Most probably, TMPE inhibited transport activity of ABCB1 protein without affecting its expression level. Analysis of TMPE physicochemical parameters suggested it was not likely to be transported by ABCB1. Molecular modeling showed TMPE being more reactive molecule than the parental compound—β-cyclocitral. Analysis of electrostatic potential maps of both compounds prompted us to hypothesize that reduced reactivity as well as susceptibility to electrophilic attack were related to the lower general toxicity of β-cyclocitral. All of the above pointed to TMPE as an interesting candidate molecule for MDR reversal in cancer cells

    The Combined Use of Phenothiazines and Statins Strongly Affects Doxorubicin-Resistance, Apoptosis, and Cox-2 Activity in Colon Cancer Cells

    No full text
    Since none of the multidrug resistance (MDR) modulators tested so far found their way into clinic, a novel approach to overcome the MDR of cancer cells has been proposed. The combined use of two MDR modulators of dissimilar mechanisms of action was suggested to benefit from the synergy between them. The effect of three phenothiazine derivatives that were used as single agents and in combination with simvastatin on cell growth, apoptosis induction, activity, and expression of cyclooxygenase-2 (COX-2) in doxorubicin-resistant colon cancer cells (LoVo/Dx) was investigated. Treatment of LoVo/Dx cells by phenothiazine derivatives combined with simvastatin resulted in an increase of doxorubicin cytotoxicity and its intracellular accumulation as compared to the treatment with phenothiazine derivatives that were used as single agents. Similarly, LoVo/Dx cells treated with two-component mixture of modulators showed the reduced expression of ABCB1 (P-glycoprotein) transporter and COX-2 enzyme, both on mRNA and protein level. Reduced expression of anti-apoptotic Bcl-2 protein and increased expression of pro-apoptotic Bax were also detected. Additionally, COX-2 activity was diminished, and caspase-3 activity was increased to a higher extent by phenothiazine derivative:simvastatin mixtures than by phenothiazine derivatives themselves. Therefore, the introduction of simvastatin strengthened the anti-MDR, anti-inflammatory, and pro-apoptotic properties of phenothiazines in LoVo/Dx cells

    Newly Obtained Apple Pectin as an Adjunct to Irinotecan Therapy of Colorectal Cancer Reducing E. coli Adherence and β-Glucuronidase Activity

    No full text
    Colorectal cancer (CRC) is the second cause of cancer death worldwide. The composition and enzymatic activity of colonic microbiota can significantly affect the effectiveness of CRC chemotherapy. Irinotecan is a drug widely used to treat colon cancer. However, the transformation of a drug-glucuronide (SN-38G) back to its active form (SN-38) by bacterial β-glucuronidase (GUS) constitutes the primary reason for the observed intestinal toxicity of irinotecan. It was demonstrated that novel enzymatically extracted apple pectin (PC) might be a promising candidate for an adjunct to irinotecan therapy. PC itself reduced the viability of HCT 116 and Caco-2 colorectal cancer cells, induced apoptosis, and increased intracellular reactive oxygen species production. Moreover, PC enhanced the cytotoxic and proapoptotic effect of irinotecan (at concentrations below its IC50), i.e., synergistic effect was recorded. Additionally, PC exhibited potent anti-inflammatory properties and prevented adhesion of prototype adherent-invasive E. coli (AIEC) LF82 strain and laboratory K-12C600 strain to colon cancer cells. PC was also identified to be an effective inhibitor of bacterial GUS activity. Altogether, novel apple pectin was identified as a promising candidate for a supplement to irinotecan therapy that might alleviate its side-effects via inhibition of bacterial GUS and thus increasing its therapeutic efficacy

    The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan

    No full text
    Pectin constitutes an essential component of dietary fiber. Modified pectins from various sources possess potent anticancer and immunomodulatory activities. In this study, two pectins isolated from apple pomace by Trichoderma enzyme treatment, PX (with endo-xylanase) and PCX (with both endo-cellulase and endo-xylanase), were studied in colon cancer cell lines (HCT 116, Caco-2, and HT-29). Both pectins reduced colon cancer cell viability, induced apoptosis, and increased intracellular amounts of reactive oxygen species. Additionally, synergy between pectin and an active form of irinotecan, SN-38, in all aspects mentioned above, was discovered. This drug is a common component of cytotoxic combinations recommended as treatment for colon cancer patients. PX and PCX demonstrated significant anti-inflammatory activity in lipopolysaccharide-stimulated cells. Interaction of apple pectins with galectin-3 and Toll-like Receptor 4 (TLR4) was suggested to be responsible for their anticancer and anti-inflammatory effect. Since PCX was more active than PX in almost all experiments, the role of the enzyme used to obtain the pectin for its biological activity was discussed. It was concluded that co-operation between both enzymes was needed to obtain the molecule of the most beneficial properties. The low molecular mass of PCX together with a high proportion of rhamnogalacturonan I (RG I) regions seemed to be crucial for its superior activity
    corecore