36 research outputs found

    A planning study for palliative spine treatment using StatRT and megavoltage CT simulation.

    Get PDF
    Megavoltage CT (MVCT) simulation on the TomoTherapy Hi·Art system is an alternative to conventional CT for treatment planning in the presence of severe metal artifact. StatRT is a new feature that was implemented on the TomoTherapy operator station for performing online MVCT scanning, treatment planning and treatment delivery in one session. The clinical feasibility of using the StatRT technique and MVCT simulation to palliative treatment for a patient with substantial spinal metallic hardware is described. A patient with metastatic non-small-cell lung cancer involving the thoracic spine underwent conventional kilovoltage CT simulation. The metal artifact due to stainless steel spine-stabilizing rods was too severe for treatment planning, despite attempts to correct using density override. The patient was then re-scanned using MVCT on a tomotherapy unit. Plans were generated using both StatRT and conventional tomotherapy planning (Tomo plan) with different settings for comparison. StatRT planning ran a total of five iterations in a short planning window (10-15 min). Two Tomo plans were generated using: (1) five iterations in the "full scatter" mode, and (2) 300 iterations in the "beamlet" mode. It was noted that the DVH of the StatRT plan was almost identical to the Tomo plan optimized by the "full scatter" mode and the same number of iterations. Dose distribution analysis reveals that these three planning methods yielded comparable doses to heart, lungs and targets. This work also demonstrated that undermodulation can result in a high degree of thread effects. The overall time for the treatment process (including 7 minutes for simulation, 15 minutes for contouring, 10 minutes for planning and 5 minutes for delivery) decreases from hours to around 40 minutes using the StatRT procedure. StatRT is a feasible treatment-planning tool for physicians to scan, contour and treat patients within one hour. This can be particularly beneficial in urgent palliative treatments

    Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours

    Get PDF
    properly cited. Purpose. To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing and successive localization (MPSL) algorithms were designed and implemented for achieving autosegmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix© and MIMVista software). Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV) were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0±11.1 seconds per phase (512×512 resolution) as compared to 142.3±11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth) were 0.865±0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation

    Medical physics practice in the next decade

    No full text
    Impressive advances in computers and materials science have fueled a broad-based confluence of basic science breakthroughs.These advances are making us reformulate our learning, teaching and credentialing methodologies and research and development frontiers. We are now in the age of molecular medicine. In the entire field of health care, a paradigm shift from population-based solutions to individual specific care is taking place. These trends are reshaping the practice of medical physics. In this short presentation, examples are given to illustrate developments in image-guided intensity-modulated and adaptive helical tomotherapy, enhanced application of intensity modulation radiotherapy (IMRT) using adaptive radiotherapy and conformal avoidance. These advances include improved normal tissue sparing and permit dose reconstruction and verification, thereby allowing significant biologically effective dose escalation and reduced radiation toxicity. The intrinsic capability of helical TomoTherapy for megavoltage CT imaging for IMRT image-guidance is also discussed. Finally developments in motion management are described

    Glamour of technology

    No full text
    corecore