5 research outputs found

    Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis

    No full text
    International audienceFunctional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells

    Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip

    No full text
    In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient

    Conditional FKBP12.6 Overexpression in Mouse Cardiac Myocytes Prevents Triggered Ventricular Tachycardia Through Specific Alterations in Excitation- Contraction Coupling

    No full text
    International audienceBackground— Ca 2+ release from the sarcoplasmic reticulum via the ryanodine receptor (RyR2) activates cardiac myocyte contraction. An important regulator of RyR2 function is FKBP12.6, which stabilizes RyR2 in the closed state during diastole. β-Adrenergic stimulation has been suggested to dissociate FKBP12.6 from RyR2, leading to diastolic sarcoplasmic reticulum Ca 2+ leakage and ventricular tachycardia (VT). We tested the hypothesis that FKBP12.6 overexpression in cardiac myocytes can reduce susceptibility to VT in stress conditions. Methods and Results— We developed a mouse model with conditional cardiac-specific overexpression of FKBP12.6. Transgenic mouse hearts showed a marked increase in FKBP12.6 binding to RyR2 compared with controls both at baseline and on isoproterenol stimulation (0.2 mg/kg IP). After pretreatment with isoproterenol, burst pacing induced VT in 10 of 23 control mice but in only 1 of 14 transgenic mice ( P <0.05). In isolated transgenic myocytes, Ca 2+ spark frequency was reduced by 50% ( P <0.01), a reduction that persisted under isoproterenol stimulation, whereas the sarcoplasmic reticulum Ca 2+ load remained unchanged. In parallel, peak I Ca,L density decreased by 15% ( P <0.01), and the Ca 2+ transient peak amplitude decreased by 30% ( P <0.001). A 33.5% prolongation of the caffeine-evoked Ca 2+ transient decay was associated with an 18% reduction in the Na + -Ca 2+ exchanger protein level ( P <0.05). Conclusions— Increased FKBP12.6 binding to RyR2 prevents triggered VT in normal hearts in stress conditions, probably by reducing diastolic sarcoplasmic reticulum Ca 2+ leak. This indicates that the FKBP12.6-RyR2 complex is an important candidate target for pharmacological prevention of VT
    corecore