14 research outputs found
Antimicrobial Peptides (Amps) - A Potential Solution Against Microbial Resistance
Π‘Π»Π΅Π΄ Π²ΡΠ²Π΅ΠΆΠ΄Π°Π½Π΅ΡΠΎ ΠΈΠΌ Π·Π° ΠΏΡΡΠ²ΠΈ ΠΏΡΡ ΠΏΡΠ΅Π· 50-ΡΠ΅ Π³ΠΎΠ΄ΠΈΠ½ΠΈ Π½Π° ΠΌΠΈΠ½Π°Π»ΠΈΡ Π²Π΅ΠΊ, Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΡΠΈΡΠ΅ ΡΡΠΈΠ»Π΅Π½ΠΎ ΡΠ΅ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Ρ Π·Π° Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π° ΠΌΠΈΠΊΡΠΎΠ±Π½ΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ. ΠΠ½ΠΎΠ³ΠΎ ΠΎΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈΡΠ΅ ΠΎΠ±Π°ΡΠ΅ ΡΡΠ°Π²Π°Ρ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈ ΠΊΡΠΌ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Π½ΠΈΡΠ΅ Π² ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°ΡΠ° Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΡΠΈ, ΠΊΠΎΠ΅ΡΠΎ Π²ΠΎΠ΄ΠΈ Π΄ΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΠ° ΠΎΡ ΡΡΡΡΠ΅Π½Π΅ΡΠΎ Π½Π° Π½ΠΎΠ²ΠΈ Π°Π³Π΅Π½ΡΠΈ Π·Π° Π±ΠΎΡΠ±Π° Ρ Π±ΠΎΠ»Π΅ΡΡΠΎΡΠ²ΠΎΡΠ½ΠΈΡΠ΅ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΈ. Π’ΡΠΉ ΠΊΠ°ΡΠΎ ΠΏΠΎΠ²Π΅ΡΠ΅ΡΠΎ ΠΆΠΈΠ²ΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΈ ΠΈΠΌΠ°Ρ Π±Π»ΠΈΠ·ΠΊΠ° ΡΡΡΡΠΊΡΡΡΠ° Π½Π° ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π½ΠΎ Π½ΠΈΠ²ΠΎ, ΡΡΡΠ΄Π½ΠΎ Π΅ Π΄Π° ΡΠ΅ ΠΎΡΠΊΡΠΈΡΡ Π²Π΅ΡΠ΅ΡΡΠ²Π°, ΠΊΠΎΠΈΡΠΎ Π΄Π° ΡΠ° Π»Π΅ΡΠ°Π»Π½ΠΈ Π·Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈ Π²ΠΈΠ΄ΠΎΠ²Π΅ ΠΈ Π΄Π° ΡΠ° Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΈ Π·Π° Π΄ΡΡΠ³ΠΈ.ΠΠ½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΠΈΡΠ΅ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΈ (AMPs) ΡΠ° ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»Π½ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊΠ°ΡΠΎ Π΅Π²Π΅Π½ΡΡΠ°Π»Π΅Π½ Π°Π»ΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π΅Π½ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ Π·Π° Π±ΠΎΡΠ±Π° Ρ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ, ΠΏΡΠΈΡΠΈΠ½Π΅Π½ΠΈ ΠΎΡ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΡΠ½ΠΎ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»Π½ΠΈ ΡΠ°ΠΌΠΎΠ²Π΅. ΠΡΠ²Π΅Π΄Π΅Π½ΠΈ ΡΠ° ΠΊΠ°ΡΠΎ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»Π½Π° Π³ΡΡΠΏΠ° Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈ Π²Π΅ΡΠ΅ΡΡΠ²Π° Π² ΠΊΡΠ°Ρ Π½Π° 70-ΡΠ΅ ΠΈ Π½Π°ΡΠ°Π»ΠΎΡΠΎ Π½Π° 80-ΡΠ΅ Π³ΠΎΠ΄ΠΈΠ½ΠΈ Π½Π° ΠΌΠΈΠ½Π°Π»ΠΈΡ Π²Π΅ΠΊ. ΠΡΠΌ Π΄Π½Π΅ΡΠ½ΠΎ Π²ΡΠ΅ΠΌΠ΅ Π³ΡΡΠΏΠ°ΡΠ° Π½Π°Π±ΡΠΎΡΠ²Π° ΠΌΠ΅ΠΆΠ΄Ρ 2500 ΠΈ 6000 ΠΎΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄Π° Ρ Π³ΠΎΠ»Π΅ΠΌΠΈΠ½Π° ΠΌΠ΅ΠΆΠ΄Ρ 10 ΠΈ 80 Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ΅Π»ΠΈΠ½Π½ΠΈ ΠΎΡΡΠ°ΡΡΠΊΠ°, Ρ ΠΏΡΠ΅Π΄ΠΈΠΌΠ½ΠΎ ΡΠΏΠΈΡΠ°Π»Π½Π° ΡΡΡΡΠΊΡΡΡΠ°. AMPs ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ²Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π½ΠΎ Π·Π°ΡΠ΅Π΄Π΅Π½ΠΈ, Π°ΠΌΡΠΈΠΏΠ°ΡΠΈΡΠ½ΠΈ ΡΡΡΡΠΊΡΡΡΠΈ Ρ Π³ΠΎΠ»ΡΠΌΠΎ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ ΠΈ Π½Π΅Π³ΠΎΠ»ΡΠΌΠ° Π΄ΡΠ»ΠΆΠΈΠ½Π° Π½Π° ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π°ΡΠ°. ΠΡΠΎΡΠ²ΡΠ²Π°Ρ ΡΠΈΡΠΎΠΊ ΡΠΏΠ΅ΠΊΡΡΡ Π½Π° Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡ ΡΠΏΡΡΠΌΠΎ Π³ΡΠ°ΠΌ-ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π½ΠΈ ΠΈ Π³ΡΠ°ΠΌ-ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π½ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, Π²ΠΈΡΡΡΠΈ ΠΈ ΠΏΠ°ΡΠ°Π·ΠΈΡΠΈ Π² ΡΠΈΡΠΎΠΊ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΠΎΡ ΡΠ ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ. Π ΠΏΡΠΈΡΠΎΠ΄Π°ΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ²Π°Ρ Π²Π°ΠΆΠ½Π° ΡΠ°ΡΡ ΠΎΡ Π²ΡΠΎΠ΄Π΅Π½Π°ΡΠ° ΠΈΠΌΡΠ½Π½Π° Π·Π°ΡΠΈΡΠ° Π½Π° ΠΆΠΈΠ²ΠΎΡΠ½ΠΈ ΠΈ Π½Π°ΡΠ΅ΠΊΠΎΠΌΠΈ. Π‘ΡΠΈΡΠ° ΡΠ΅, ΡΠ΅ Π΄ΠΎΡΠΈ Π·Π°ΠΌΠ΅ΡΡΠ²Π°Ρ ΠΈΠΌΡΠ½Π½ΠΈΡ ΠΎΡΠ³ΠΎΠ²ΠΎΡ ΠΏΡΠΈ ΠΏΠΎ-Π½ΠΈΠ·ΡΠΈΡΠ΅ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΈ β ΠΏΡΠΈΠΌΠ΅Ρ Π·Π° ΡΠΎΠ²Π° ΡΠ° ΠΈΠ·ΠΎΠ»ΠΈΡΠ°Π½ΠΈΡΠ΅ ΡΠ΅ΠΊΡΠΎΠΏΠΈΠ½ΠΈ, Π΄Π΅ΡΠ΅Π½Π·ΠΈΠ½ΠΈ ΠΈ ΠΌΠ°Π³Π΅Π½ΠΈΠ½ΠΈ.AMPs ΠΎΡΡΡΠ΅ΡΡΠ²ΡΠ²Π°Ρ Π±ΡΡΠ· Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΈΠ΄Π΅Π½ Π΅ΡΠ΅ΠΊΡ (in vitro β Π² ΡΠ°ΠΌΠΊΠΈΡΠ΅ Π½Π° ΠΌΠΈΠ½ΡΡΠΈ). Π ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡΠ΅ Π³ΠΎΠ΄ΠΈΠ½ΠΈ ΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡ ΠΊΠ°ΡΠΎ βΠ΅ΡΡΠ΅ΡΡΠ²Π΅Π½ΠΈ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΡΠΈβ. ΠΠ°ΡΡΠΎΡΡΠΈΡΡ ΠΎΠ±Π·ΠΎΡ ΡΠ°Π·Π³Π»Π΅ΠΆΠ΄Π° ΠΊΠ»Π°ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡΡΠ° Π½Π° AMPs, ΡΡΡ
Π½Π°ΡΠ° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡ ΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΡΠΌ Π½Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅.After introducing them for the first time in the 1950s, antibiotics have been used extensively for the treatment of microbial infections. Many of the bacteria, however, have become resistant to the antibiotics used in the clinic, which has led to the need for new agents to control pathogenic microorganisms. Since most living organisms have a close molecular structure, it is difficult to find substances that are lethal to certain species and are safe for others.Antimicrobial peptides (AMPs) have received special attention as a possible alternative approach to fighting infections caused by antibiotic-resistant bacterial strains. They were introduced as a single group of biologically active substances in the late 1970s and early 1980s. To date, the group is presented by 2500 to 6000 oligopeptides with a size between 10 and 80 amino acid residues, with a predominantly spiral structure. AMPs are positively charged, amphipathic structures of great variety and without a significant molecular length. They exhibit a broad spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria, viruses and parasites over a wide range of pH and temperatures. In nature they represent an important part of the innate immune protection of animals and insects. It is thought that they even replace the immune response in the lower organisms β an example of this are the isolated cecropins, defensins and maggenes.AMPs perform a rapid bactericidal effect (in vitro β within minutes). In recent years they have been identified as "natural antibiotics". This review is focused on the classification of AMPs, their antimicrobial activity and mechanism of action
Aspects Of The Use Of RGD Peptides
ΠΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ΅Π»ΠΈΠ½Π½Π°ΡΠ° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π½ΠΎΡΡ L-Π°ΡΠ³ΠΈΠ½ΠΈΠ½ΠΈΠ»-Π³Π»ΠΈΡΠΈΠ»-L-Π°ΡΠΏΠ°ΡaΠ³ΠΈΠ½ΠΎΠ²Π° ΠΊΠΈΡΠ΅Π»ΠΈΠ½Π° (L-argininyl-glycyl-L-aspatric acid) β RGD, Π΅ ΠΏΡΠΈΡΡΡa Π½Π° ΠΌΠ½ΠΎΠ³ΠΎ Π΅ΠΊΡΡΡΠ°ΡΠ΅Π»ΡΠ»Π°ΡΠ½ΠΈ ΠΈ Π²ΡΡΡΠ΅ΠΊΠ»Π΅ΡΡΡΠ½ΠΈ Π±Π΅Π»ΡΡΡΠΈ. ΠΡΡΠ²ΠΎΠ½Π°ΡΠ°Π»Π½ΠΎ ΠΏΠ΅ΠΏΡΠΈΠ΄ΡΡ RGD Π΅ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠ°Π½ Π²ΡΠ² ΡΠΈΠ±ΡΠΎΠ½Π΅ΠΊΡΠΈΠ½ ΠΏΡΠ΅Π· 1984 Π³. ΠΎΡ E. Ruoslahti, ΠΊΠΎΠΉΡΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΡΠ²Π°, ΡΠ΅ ΡΠ΅Π·ΠΈ ΡΡΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ΅Π»ΠΈΠ½ΠΈ ΡΠ° ΠΌΡΡΡΠΎΡΠΎ Π·Π° ΠΎΡΡΡΠ΅ΡΡΠ²ΡΠ²Π°Π½Π΅ Π½Π° ΡΠ²ΡΡΠ·Π²Π°Π½Π΅ (Π°Π΄Ρ
Π΅Π·ΠΈΡ) Π½Π° ΠΊΠ»Π΅ΡΠΊΠΈΡΠ΅ ΠΊΡΠΌ ΠΈΠ·Π²ΡΠ½ΠΊΠ»Π΅ΡΡΡΠ½ΠΈΡ ΠΌΠ°ΡΡΠΈΠΊΡ ΠΈΠ»ΠΈ Π΄ΡΡΠ³ΠΈ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ ΠΊΠ»Π΅ΡΡΡΠ½ΠΈ Π°Π΄Ρ
Π΅Π·ΠΈΠ²Π½ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΠΈ ΠΊΠ°ΡΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠΈΠ½ΠΈ. Π ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠΎΠ·ΠΈ ΡΡΠΈ-Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ΅Π»ΠΈΠ½Π΅Π½ ΠΎΡΡΠ°ΡΡΠΊ Π΅ ΠΎΡΠΊΡΠΈΡ ΠΈ Π² ΠΌΠ½ΠΎΠ³ΠΎ Π΄ΡΡΠ³ΠΈ Π±Π΅Π»ΡΡΡΠΈ, Π½Π°ΠΌΠΈΡΠ°ΡΠΈ ΡΠ΅ Π² Π΅ΠΊΡΡΡΠ°ΡΠ΅Π»ΡΠ»Π°ΡΠ½ΠΈΡ ΠΌΠ°ΡΡΠΈΠΊΡ ΠΈ Π² ΠΊΡΡΠ²ΡΠ°. Π’ΠΎΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ²Π° ΠΎΠ±Ρ ΠΌΠΎΡΠΈΠ² Π·Π° ΡΠ°Π·ΠΏΠΎΠ·Π½Π°Π²Π°Π½Π΅ ΠΎΡ Π½ΡΠΊΠΎΠΈ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΈ Π½Π° ΠΊΠ»Π΅ΡΠΊΠΈΡΠ΅. Π‘Π»Π΅Π΄ ΠΎΡΠΊΡΠΈΠ²Π°Π½Π΅ΡΠΎ Π½Π° RGD ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π½ΠΎΡΡΡΠ° ΠΊΠ°ΡΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π΅Π½ Π»ΠΈΠ³Π°Π½Π΄ Π·Π° ΡΠ²ΡΡΠ·Π²Π°Π½Π΅ Ρ ΠΊΠ»Π΅ΡΡΡΠ½ΠΈΡΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠΈΠ½ΠΈ (Π½Π°ΠΉ-ΡΠ΅ΡΡΠΎ Ξ±vΞ²3) RGD-ΠΌΠ΅Π΄ΠΈΠΈΡΠ°Π½ΠΈΡΠ΅ ΠΌΠ°Π»ΠΊΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΠΈ ΠΈ RGD-ΡΡΠ΄ΡΡΠΆΠ°ΡΠΈΡΠ΅ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ½ΠΈ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΈ ΠΈ Π±Π΅Π»ΡΡΡΠΈ ΡΠ΅ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Ρ Π·Π° ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠ°Π½ΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½ΠΎ ΡΠ°Π·ΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΊΠ°ΡΠΎ Π°Π³Π΅Π½ΡΠΈ Π·Π° ΠΊΠ»Π΅ΡΡΡΠ½ΠΎ ΠΏΡΠΈΡΠ΅Π»Π²Π°Π½Π΅ ΠΈ Π΅Π½Π΄ΠΎΠ·ΠΎΠΌΠ½ΠΎ Π΄ΠΎΡΡΠ°Π²ΡΠ½Π΅. ΠΠΎΡΠ°Π΄ΠΈ Π³ΠΎΠ»Π΅ΠΌΠΈΡ Π±ΡΠΎΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠΈΠ½ΠΈ Π² Π΅Π½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»Π½ΠΈΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΈ ΠΊΡΡΠ²ΠΎΡΠ½Π°Π±Π΄ΡΠ²Π°Π½Π΅ΡΠΎ Π½Π° ΡΡΠΌΠΎΡΠ½ΠΈΡΠ΅ ΡΡΠΊΠ°Π½ΠΈ RGD-ΠΌΠ΅Π΄ΠΈΠΈΡΠ°Π½ΠΎΡΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½ΠΎ Π΄ΠΎΡΡΠ°Π²ΡΠ½Π΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ²Π° ΡΠΏΠ΅ΡΠΈΠ°Π»Π΅Π½ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ°ΠΊΠΎΠ²Π°ΡΠ° ΡΠ΅ΡΠ°ΠΏΠΈΡ. ΠΡΠ²Π΅Π½ ΡΠΎΠ²Π° RGD-ΠΈΠ½ΡΠ΅Π³ΡΠΈΠ½ΠΎΠ²Π°ΡΠ° ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π° Π·Π° ΠΏΡΠΈΡΠ΅Π»Π½ΠΎ ΠΊΠ»Π΅ΡΡΡΠ½ΠΎ ΡΠ°Π·ΠΏΠΎΠ·Π½Π°Π²Π°Π½Π΅ ΠΈ ΠΈΠ½ΡΠ΅ΡΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΡ, ΠΊΠΎΠ΅ΡΠΎ ΡΠ΅ ΠΏΡΠΈΠ»Π°Π³Π° ΠΏΡΠΈ ΡΡΠ·Π΄Π°Π΄Π΅Π½ΠΈ ΠΎΡ ΡΠΎΠ²Π΅ΠΊΠ° ΡΡΡΡΠΊΡΡΡΠΈ, ΠΊΠΎΠΈΡΠΎ ΠΈΠΌΠΈΡΠΈΡΠ°Ρ ΠΏΠ°ΡΠΎΠ³Π΅Π½ΠΈΡΠ΅. ΠΠΎΡΠ°Π΄ΠΈ ΡΠΎΠ²Π° ΡΠΈ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΈΡΡΠ΅ΠΌΠΈΡΠ΅ ΡΠ΅ ΠΈΠ·ΡΠ»Π΅Π΄Π²Π°Ρ Π·Π° ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠΈ, ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠΈ ΠΈ ΡΠ΅Π³Π΅Π½Π΅ΡΠΈΡΠ°ΡΠΈ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠΈΡΠ°Π½ΠΈΡΠ΅ ΡΡΠΊΠ°Π½ΠΈ.ΠΡΠΊΡΠΈΠ²Π°Π½Π΅ΡΠΎ Π½Π° ΡΡΠΌΠΎΡΠΈ ΡΠ΅ ΠΎΡΠ»ΠΈΡΠ°Π²Π° Ρ Π²ΠΈΡΠΎΠΊΠ° ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡ ΠΈ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»Π½ΠΎΡΡ ΡΡΠ΅Π· ΠΊΠΎΠ½ΡΠ³Π°ΡΠΈΡ Π½Π° ΠΌΠ°ΡΠΊΠ΅ΡΠΈΡΠ΅ Ρ RGD-ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΈ. Π’Π°Π·ΠΈ Π²Π°ΠΆΠ½Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡ ΡΠ΅ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π° ΡΠΈΡΠΎΠΊΠΎ Π·Π° ΡΠ°Π½Π½Π° Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΠΈ Π΄ΠΈΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π½Π° Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° Π½Π° ΡΡΠΌΠΎΡΠΈΡΠ΅, ΠΊΠ°ΠΊΡΠΎ ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠ΅. RGD ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠ°Π½ΠΈΡΠ΅ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π° ΠΈ Π°Π³Π΅Π½ΡΠΈ Π·Π° ΠΎΠ±ΡΠ°Π·Π½Π° Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΡΠ΅ ΡΡΠ·Π΄Π°Π²Π°Ρ ΡΡΠ΅Π· ΠΊΠΎΠ½ΡΠ³Π°ΡΠΈΡ Π½Π° RGD-ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΈΡΠ΅ Ρ Π½ΠΎΡΠΈΡΠ΅Π»ΠΈ. ΠΠΎΠ»Π΅ΠΊΡΠ»ΠΈΡΠ΅ Π½ΠΎΡΠΈΡΠ΅Π»ΠΈ Π±ΠΈΠ²Π°Ρ Π½Π°ΡΠΎΠ²Π°ΡΠ΅Π½ΠΈ Ρ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΠΈ ΠΈΠ»ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΠΈ, Π³Π΅Π½Π΅ΡΠΈΡΠ°ΡΠΈ ΡΠΈΠ³Π½Π°Π». RGD-ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΈΡΠ΅ ΠΈ RGD-ΠΌΠΈΠΌΠ΅ΡΠΈΡΠΈΡΠ΅ ΡΠ΅ ΠΏΡΠΈΠ»Π°Π³Π°Ρ ΡΡΡΠΎ ΠΈ Π·Π° ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠ°Π½Π΅ Π½Π° Π»ΠΈΠΏΠΎΠ·ΠΎΠΌΠΈ, ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈ ΠΈ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΈ ΠΏΠΎ Ρ
ΠΈΠΌΠΈΡΠ΅Π½ Π½Π°ΡΠΈΠ½, ΠΊΠΎΠ΅ΡΠΎ ΠΏΠΎΠ²ΠΈΡΠ°Π²Π° Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΠΈΡΠ΅ ΠΈΠΌ Π΅ΡΠ΅ΠΊΡΠΈ ΠΊΠ°ΡΠΎ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ½ΠΈ Π°Π³Π΅Π½ΡΠΈ.RGD-ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΈΡΠ΅ ΡΠ° ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΠΈ Ρ Π³ΠΎΠ»ΡΠΌΠΎ Π±ΡΠ΄Π΅ΡΠΎ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠ΅ΡΠ°ΠΏΠΈΡΡΠ° ΠΊΠ°ΡΠΎ Π»Π΅ΠΊΠ°ΡΡΡΠ²ΠΎ-Π΄ΠΎΡΡΠ°Π²ΡΡΠ° ΡΠΈΡΡΠ΅ΠΌΠ°, Π² ΠΎΠ±ΡΠ°Π·Π½Π°ΡΠ° Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΠΈ Π² ΡΡΠΊΠ°Π½Π½ΠΎΡΠΎ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΡΡΠ²ΠΎ.The amino acid sequence L-argininyl-glycyl-L-asparaginic acid (RGD) is inherent in many extracellular and intracellular proteins. Initially, the RGD peptide was identified in fibronectin in 1984 by E. Ruoslahti, who found that these three amino acids were the site of adhesion of cells to the extracellular matrix or other cells by cell adhesion molecules as integrins. Subsequently, this tri-amino acid residue was also found in many other proteins in the extracellular matrix and blood. It is a common pattern of recognition by some cell receptors. Following the discovery of the RGD sequence as a potential ligand for binding to cellular integrins (most commonly Ξ±vΞ²3), RGD-mediated small molecules and RGD-containing therapeutic peptides and proteins have been used for controlled drug distribution and as agents for cell targeting and endosomal delivery. Due to the large number of integrins in endothelial cells and blood vessels to tumor tissues, RGD-mediated drug delivery is of a particular interest in cancer therapy. Furthermore, the RGD-integrin system is used for target cell recognition and internalization, which is applied to human-created structures that mimic pathogens. Because of this, the systems are being tested for use as diagnostics, therapeutics, and regenerating transplanted tissues.The detection of tumors is characterized by high specificity and sensitivity by conjugation of markers with RGD peptides. This important technology is widely used for early diagnosis and differential diagnosis of tumors as well as for clinical analysis and treatment. RGD-modified drugs and imaging agents have been created by conjugation of RGD peptides to carriers. The carrier molecules are loaded with drug molecules or signal-generating molecules. RGD peptides and RGD mimetics are also applied to modify liposomes, polymers and peptides in a chemical way that increases their biological effects as therapeutic agents.RGD peptides are promising molecules with great future use in therapy as a drug-delivery system, in imaging diagnostics and in tissue engineering
Sulfo- and Oxy-analogues of Arginine: Synthesis, Analysis and Preliminary Biological Screening
A novel methodology for the synthesis of sulfo- and oxy-modified amino acid analogues of
arginine (Arg) has been developed using both conventional and polymer assisted synthesis from ready
available amino acid precursor. Introduction of guanidine group was made also by the MWA synthesis.
The in vitro inhibitory effect of the amino acid analogues on the growth of murine erythroleukemia cells,
clone F4N in culture was also studied. (doi: 10.5562/cca1780
Antiproliferative and apoptogenic effects of myosmine on erythroleukemia and hepatocellular carcinoma cells
Myosmine, 3-(1-pyrroline-2-yl) pyridine is a minor tobacco alkaloid that has also been found in various widely used foods. Recently, this phytochemical has been gaining an increasing interest as a potential risk factor for the development of oesophageal adenocarcinoma. This study aimed to examine the effects of myosmine on the cell viability and proliferative activity of erythroleukemia and hepatocellular carcinoma cells and to obtain additional information about the mechanisms underlying its cytotoxic activity. The in vitro cytotoxic effect of myosmine on the HepG2 and MEL tumour cell lines was assessed by MTT dye reduction and trypan blue dye exclusion assays. The alterations in the tumour cell morphology induced by myosmine were analysed by fluorescent microscopy after staining with acridine orange (AO)/ethidium bromide (EtBr) and 4β²,6-diamidine-2β²-phenylindole dihydrochloride (DAPI). Annexin V-FITC/propidium iodide (PI) staining was used to assess the apoptosis-inducing ability of myosmine. The modulating action of antioxidant treatment on myosmine-induced cytotoxicity against the HepG2 tumour cell line was also examined. The cell viability tests indicated that myosmine induced a significant dose-dependent reduction of the viability and proliferative activity of both tumour cell lines. Fluorescent microscopy studies revealed marked alterations in the morphology of myosmine-treated tumour cells with signs of cell cycle arrest and apoptosis. The results of the simultaneous treatment with myosmine and vitamin C showed modulating activity of vitamin C on the cytotoxic effect of myosmine with concentration- and time-dependent variations. The presented results could contribute to the assessment of the potential health risks associated with the dietary myosmine exposure. Abbreviations AO: acridine orange; DAPI: 4β,6-diamidine-2β-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle medium; DMSO: dimethyl sulfoxide; EtBr: ethidium bromide; FITC: fluorescein isothiocyanate; GERD: gastroesophageal reflux disease; MEL: murine erythroleukemia; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NNN: N'-nitrosonornicotine; PBS: phosphate buffered saline; PI: propidium iodid
Newly synthesized neuropeptides with central nervous activity in mice
Aim: Object of present study are two newly synthesized neuropeptides with short chains: analogues of Tyr-MIF β 1 with code P1 and of Nociceptine with code P2. Materials and Methods: On male albino mice we studied the changes in the cognitive functions of animals after 3, 7 and 14-days pretreatment with both compounds (5 mg/kg intraperitoneally- i.p.) via: step through test (for learning and memory), Rot-a-rod test (for muscular coordination) and Hole board test (for exploratory activity). Their potential analgesic effect was evaluated by Acetic acid test and their activity on the cen-tral nervous system (CNS) was evaluated via interaction with hexobarbital (HB- 100 mg/kg i.p). Statistics were performed with Student β Fisher test.Results: On the 3rd day after treatment daily both compounds had no effect on cognitive functions of animals, but on the 7th day the analogue of Tyr- MIF β1 (peptide P1) significantly improved the memory (by 60%) and decreased also the exploratory activity of treated animals. The analogue of Nociceptine-P2 demonstrated significant dose-dependent analgesic effect. On the 14th day both compounds improved neuro-muscular coordination of animals. In single doses two compounds shorten significantly duration of hexobarbital narcosis (Π 1 by 40% and Π 2 by 50%) via unknown mechanism, probably related to functional antagonism between the neuropeptides and hexobarbital on CNS level. Conclusion: Newly synthesized neuropeptides are promising biological active substances with effect on CNS. The analogue of Tyr-MIFβ1 improves cognitive function of animals and the analogue of Nociceptine has significant dose-dependent analgesic effect
In vitro assessment of the cytotoxic effects of novel RGD analogues
The RGD sequence is present in many extracellular matrix proteins and intracellular proteins, including caspases. Synthetic RGD peptides may affect adhesion, migration and tumour metastasis, or directly induce apoptosis. Several RGD peptides were synthesized, and their anti-adhesive and cytotoxic properties were analyzed in vitro. Here we present the cytotoxic activities of RGD, R(NO2)GD, CavGD and RGD-OMe on non-tumour 3T3 cells and tumour cell lines HepG2 and MCF-7. The cell growth inhibitory effects of RGD-OMe are significantly higher than those of RGD on the cell lines used. Evidently the modification in the carboxylic group of RGD with simple esterification increases the cell growth inhibitory effects of the parent compound
Neurotensins and their therapeutic potential: research field study
The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied
Neurotensins and their therapeutic potential: research field study
The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied.MG Georgieva, AA Balacheva, TI Pajpanova, L Milella, AG Atanasov and NT Tzvetkov acknowledge the support by the Bulgarian
National Science Found (BNSF) under grant number KP-06-OPR 03/8.info:eu-repo/semantics/publishedVersio