267 research outputs found
Crystal structure and physical properties of EuPtIn intermetallic antiferromagnet
We report the synthesis of EuPtIn single crystalline platelets by the
In-flux technique. This compound crystallizes in the orthorhombic Cmcm
structure with lattice parameters \AA, \AA and
\AA. Measurements of magnetic susceptibility, heat capacity,
electrical resistivity, and electron spin resonance (ESR) reveal that
EuPtIn is a metallic Curie-Weiss paramagnet at high temperatures and
presents antiferromagnetic (AFM) ordering below K. In addition, we
observe a successive anomaly at K and a spin-flop transition at
T applied along the -plane. In the paramagnetic state, a
single Eu Dysonian ESR line with a Korringa relaxation rate of Oe/K is observed. Interestingly, even at high temperatures, both ESR
linewidth and electrical resistivity reveal a similar anisotropy. We discuss a
possible common microscopic origin for the observed anisotropy in these
physical quantities likely associated with an anisotropic magnetic interaction
between Eu 4 electrons mediated by conduction electrons.Comment: 5 pages, 5 figure
Magnetic structure and critical behavior of GdRhIn: resonant x-ray diffraction and renormalization group analysis
The magnetic structure and fluctuations of tetragonal GdRhIn5 were studied by
resonant x-ray diffraction at the Gd LII and LIII edges, followed by a
renormalization group analysis for this and other related Gd-based compounds,
namely Gd2IrIn8 and GdIn3. These compounds are spin-only analogs of the
isostructural Ce-based heavy-fermion superconductors. The ground state of
GdRhIn5 shows a commensurate antiferromagnetic spin structure with propagation
vector tau = (0,1/2, 1/2), corresponding to a parallel spin alignment along the
a-direction and antiparallel alignment along b and c. A comparison between this
magnetic structure and those of other members of the Rm(Co,Rh,Ir)n In3m+2n
family (R =rare earth, n = 0, 1; m = 1, 2) indicates that, in general, tau is
determined by a competition between first-(J1) and second-neighbor(J2)
antiferromagnetic (AFM) interactions. While a large J1 /J2 ratio favors an
antiparallel alignment along the three directions (the so-called G-AFM
structure), a smaller ratio favors the magnetic structure of GdRhIn5 (C-AFM).
In particular, it is inferred that the heavy-fermion superconductor CeRhIn5 is
in a frontier between these two ground states, which may explain its
non-collinear spiral magnetic structure. The critical behavior of GdRhIn5 close
to the paramagnetic transition at TN = 39 K was also studied in detail. A
typical second-order transition with the ordered magnetization critical
parameter beta = 0.35 was experimentally found, and theoretically investigated
by means of a renormalization group analysis.Comment: 22 pages, 4 figure
Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x = 0.001) skutterudite
We report electron spin resonance (ESR) measurements in the Gd3+ doped
semiconducting filled skutterudite compound Ce1-xGdxFe4P12 (x = 0.001). As the
temperature T varies from T = 150 K to T = 165 K, the Gd3+ ESR fine and
hyperfine structures coalesce into a broad inhomogeneous single resonance. At T
= 200 K the line narrows and as T increases further, the resonance becomes
homogeneous with a thermal broadening of 1.1(2) Oe/K. These results suggest
that the origin of these features may be associated to a subtle interdependence
of thermally activated mechanisms that combine: i) an increase with T of the
density of activated conduction-carriers across the T-dependent semiconducting
pseudogap; ii) the Gd3+ Korringa relaxation process due to an exchange
interaction, J_{fd}S.s, between the Gd3+ localized magnetic moments and the
thermally activated conduction-carriers and; iii) a relatively weak confining
potential of the rare-earth ions inside the oversized (Fe2P3)4 cage, which
allows the rare-earths to become rattler Einstein oscillators above T = 148 K.
We argue that the rattling of the Gd3+ ions, via a motional narrowing
mechanism, also contributes to the coalescence of the ESR fine and hyperfine
structure.Comment: 7 pages, 9 figures, accepted for publication in Phys Rev
Magnetic, thermal and transport properties of Cd doped CeIn
We have investigated the effect of Cd substitution on the archetypal heavy
fermion antiferromagnet CeIn via magnetic susceptibility, specific heat and
resistivity measurements. The suppression of the Neel temperature, T,
with Cd doping is more pronounced than with Sn. Nevertheless, a doping induced
quantum critical point does not appear to be achievable in this system. The
magnetic entropy at and the temperature of the maximum in resistivity are
also systematically suppressed with Cd, while the effective moment and the
Curie-Weiss temperature in the paramagnetic state are not affected. These
results suggest that Cd locally disrupts the AFM order on its neighboring Ce
moments, without affecting the valence of Ce. Moreover, the temperature
dependence of the specific heat below is not consistent with 3D magnons
in pure as well as in Cd-doped CeIn, a point that has been missed in
previous investigations of CeIn and that has bearing on the type of quantum
criticality in this system
Two Superconducting Phases in CeRh_1-xIr_xIn_5
Pressure studies of CeRh_1-xIr_xIn_5 indicate two superconducting phases as a
function of x, one with T_c >= 2 K for x < 0.9 and the other with T_c < 1.2 K
for x > 0.9. The higher T_c phase, phase-1, emerges in proximity to an
antiferromagnetic quantum-critical point; whereas, Cooper pairing in the lower
T_c phase-2 is inferred to arise from fluctuations of a yet to be found
magnetic state. The T-x-P phase diagram of CeRh_1-xIr_xIn_5, though
qualitatively similar, is distinctly different from that of
CeCu_2(Si_1-xGe_x)_2.Comment: 5 pages, 3 figure
Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation
The role of orbital differentiation on the emergence of superconductivity in
the Fe-based superconductors remains an open question to the scientific
community. In this investigation, we employ a suitable microscopic spin probe
technique, namely Electron Spin Resonance (ESR), to investigate this issue on
selected chemically substituted BaFeAs single crystals. As the
spin-density wave (SDW) phase is suppressed, we observe a clear increase of the
Fe 3 bands anisotropy along with their localization at the FeAs plane. Such
an increase of the planar orbital content interestingly occurs independently on
the chemical substitution responsible for suppressing the SDW phase. As a
consequence, the magnetic fluctuations combined with the resultant particular
symmetry of the Fe 3 bands are propitious ingredients to the emergence of
superconductivity in this class of materials.Comment: 6 pages, 5 figure
- …