412 research outputs found
High resolution simulations of high Reynolds number jets with microjet injection
Large eddy simulations have been performed of a Mach 0.9 jet at a Reynolds number of 1.3 million for both a clean and microjet injected configurations. Two numerical grids were used for the simulations differing in the number of azimuthal cells. The first with 720 cells and an azimuthal clustering near the microjet injection locations, and the other with 1440 cells and a uniform azimuthal cell spacing that matches the finest cell for the clustered case. The grids contained 100 million and 200 million cells respectively. A standard Smagorinsky sub-grid scale model was used together with a synthetic trip in the nozzle shear layer. The non-uniform grid with 720 cells azimuthally showed a variation in laminar to turbulent transition location that was a function of the clustering, with later transition in the coarser regions. However, this had little detrimental impact on mean velocity distributions further downstream. The results of the simulations were compared with PIV experimental data and good agreement of mean radial velocity and turbulent kinetic energy profiles were obtained. The microjets caused a deformation of the shear layer, reducing the radial location of peak turbulence kinetic energy in-line with the microjets. Additionally, the shear layer is translated away from the jet centreline between the microjets and becomes flat in the regions between the microjets. A Ffowcs Williams-Hawking technique was used to propagate the unsteady pressure fluctuations to the far-field. Spectral data at downstream and sideline observer locations indicated the presence of a high-frequency peak in the microjet case which is consistent with the size of the microjets. The microjets provide a blockage effect to the main jet and the peak is probably a shedding like behaviour. Overprediction of overall sound pressure levels by 6-8 dB was found when compared to the experimental data, however, the correct behaviour with observer angle was captured and more importantly the microjets showed a reduction in OASPL of around 2 dB across a range of angles, similar to the experiment results
Large eddy simulation of high reynolds number jets with microjet injection
Large eddy simulations of two isothermal Mach 0.75 jets have been performed, one of a
clean jet and one of the same jet fitted with eight equally spaced microjets. The microjets
have a pressure ratio of 2.38, with a fully expanded Mach number of 1.19. The Reynolds
number of the main jet in both simulations, based on the jet core velocity and diameter,
is 1.3 million. The simulations were performed on a cylindrical, structured, multiblock
mesh created for the clean round jet. The microjets are introduced as pressure inlet areas
within the computational domain, so avoiding the complication of modelling the microjet
feed pipes. Results of the clean jet simulation agree well with experimental data. The
simulation shows the microjets penetrating into the jet core and disrupting the otherwise
circular nature of the shear layer in the early flow development regions, though no change
in mean flow variables is noticed by the end of the potential core. Two-point two-time
correlation are performed on both cases and compared. The results show the microjets
reduce the second and fourth order correlation amplitudes and turbulent lengthscales even
at large axial locations downstream of the nozzle exit, where the effect of the microjets on
the mean flow field is not present. This gives evidence as to how the microjets are able to
reduce jet noise levels
Large eddy simulation to extract fourth order space time turbulence correlations in jets including microjet injection
Jet noise is still a major component of overall aircraft noise emission at take-off, and its reduction is
important to sustain the continuing growth of air transport. Computationally expensive Large Eddy
Simulations can be used to assess the four-order spatio-temporal correlations so as to provide input and
guidance to cheaper jet noise models. Large Eddy Simulations are presented for an isothermal Mach 0.75
jet at a Reynolds number of 1 million with and without microjet injection. The imposition of a numerical
boundary layer trip inside the jet nozzle ensures that the shear layer is fully turbulent immediately
downstream of the nozzle lip. The eight high-pressure microjets penetrate the shear layer producing
streamwise vorticity on the inside of the jet. This dissipates before the end of the potential core and there is
no effect on potential core length. The peak turbulence intensity within the shear layer is reduced, with the
greatest reduction at locations aligned with the microjet injection points. The shapes of the fourth order
correlation envelopes are little changed by the microjets, but there is a significant difference in the absolute
magnitudes. Compared to a clean jet all significant correlation terms are reduced, with the reduction still
occurring at x/Dj=6.5 where the effect of the microjets on the mean flow has dissipated. This reduction
could be used to calibrate a jet noise model in order to take account of the microjets
Nucleon superfluidity versus thermal states of isolated and transiently accreting neutron stars
The properties of superdense matter in neutron star (NS) cores control NS thermal states by affecting the efficiency of neutrino emission from NS interiors. To probe these properties we confront the theory of thermal evolution of NSs with observations of their thermal radiation. Our observational basis includes cooling isolated NSs (INSs) and NSs in quiescent states of soft X-ray transients (SXTs). We find that the data on SXTs support the conclusions obtained from the analysis of INSs: strong proton superfluidity with T_{cp,max} >= 10^9 K should be present, while mild neutron superfluidity with T_{cn,max} =(2*10^8 -- 2*10^9) K is ruled out in the outer NS core. Here T_{cn,max} and T_{cp,max} are the maximum values of the density dependent critical temperatures of neutrons and protons. The data on SXTs suggest also that: (i) cooling of massive NSs is enhanced by neutrino emission more powerful than the emission due to Cooper pairing of neutrons; (ii) mild neutron superfluidity, if available, might be present only in inner cores of massive NSs. In the latter case SXTs would exhibit dichotomy, i.e. very similar SXTs may evolve to very different thermal states
Toward Sensor Modular Autonomy for Persistent Land Intelligence Surveillance and Reconnaissance (ISR)
Currently, most land Intelligence, Surveillance and Reconnaissance (ISR) assets (e.g. EO/IR cameras) are simply data collectors. Understanding, decision making and sensor control are performed by the human operators, involving high cognitive load. Any automation in the system has traditionally involved bespoke design of centralised systems that are highly specific for the assets/targets/environment under consideration, resulting in complex, non-flexible systems that exhibit poor interoperability. We address a concept of Autonomous Sensor Modules (ASMs) for land ISR, where these modules have the ability to make low-level decisions on their own in order to fulfil a higher-level objective, and plug in, with the minimum of preconfiguration, to a High Level Decision Making Module (HLDMM) through a middleware integration layer. The dual requisites of autonomy and interoperability create challenges around information fusion and asset management in an autonomous hierarchical system, which are addressed in this work. This paper presents the results of a demonstration system, known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT), which was shown in realistic base protection scenarios with live sensors and targets. The SAPIENT system performed sensor cueing, intelligent fusion, sensor tasking, target hand-off and compensation for compromised sensors, without human control, and enabled rapid integration of ISR assets at the time of system deployment, rather than at design-time. Potential benefits include rapid interoperability for coalition operations, situation understanding with low operator cognitive burden and autonomous sensor management in heterogenous sensor systems
Improved Understanding of Atomic Ordering in Y4SixAl2- xO9- xNxMaterials Using a Combined Solid-State NMR and Computational Approach
Ceramics based around silicon aluminum oxynitrides are of both fundamental structural chemistry and technological interest. Certain oxynitride crystal structures allow very significant compositional variation through extensive Si/N exchange for Al/O, which implies a degree of atomic ordering. In this study, solid-state 29Si MAS NMR and variable field 1D and 2D 27Al MAS NMR measurements are combined with density functional theory calculations of both the structural and NMR interaction parameters for various points across the Y4Si2O7N2-Y4Al2O9 compositional range. This series provides numerous possibilities for significant variation of atomic ordering in the local ditetrahedral (Si,Al)2O7-xNx units. The two slightly structurally inequivalent aluminum sites in Y4Al2O9 are unambiguously assigned to the observed resonances. Computational findings on Y4Si2O7N2 demonstrate that the single observed 29Si NMR resonance covers a range of local inequivalent silicon environments. For the first time, the MAS NMR and neutron diffraction data from the Y4SiAlO8N structure have been directly reconciled, thus establishing aspects of atomic order and disorder that characterize this system. This comparison suggests that, although the diffraction data indicates long-range structural order supporting a highly crystalline character, the short-range information afforded by the solid-state NMR measurements indicates significant atomic disorder throughout the (Si,Al)2O7-xNx units
PSR J1119-6127 and the X-ray Emission from High Magnetic Field Radio Pulsars
The existence of radio pulsars having inferred magnetic elds in the magnetar regime suggests that possible transition objects could be found in the radio pulsar population. The discovery of such an object would contribute greatly to our understanding of neutron star physics. Here we report on unusual X-ray emission detected from the radio pulsar PSR J1119-6127 using XMM-Newton. The pulsar has a characteristic age of 1,700 yrs and inferred surface dipole magnetic eld strength of 4.1x10^13 G. In the 0.5-2.0 keV range, the emission shows a single, narrow pulse with an unusually high pulsed fraction of ~70%. No pulsations are detected in the 2.0-10.0 keV range, where we derive an upper limit at the 99% level for the pulsed fraction of 28%. The pulsed emission is well described by a thermal blackbody model with a high temperature of 2.4x10^6 K. While no unambiguous signature of magnetar-like emission has been found in high-magnetic-eld radio pulsars, the X-ray characteristics of PSR J1119-6127 require alternate models from those of conventional thermal emission from neutron stars. In addition, PSR J1119-6127 is now the radio pulsar with the smallest characteristic age from which thermal X-ray emission has been detected
Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer
We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures
Observing the First Stars and Black Holes
The high sensitivity of JWST will open a new window on the end of the
cosmological dark ages. Small stellar clusters, with a stellar mass of several
10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun
should be directly detectable out to redshift z=10, and individual supernovae
(SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible
beyond this redshift. Dense primordial gas, in the process of collapsing from
large scales to form protogalaxies, may also be possible to image through
diffuse recombination line emission, possibly even before stars or BHs are
formed. In this article, I discuss the key physical processes that are expected
to have determined the sizes of the first star-clusters and black holes, and
the prospect of studying these objects by direct detections with JWST and with
other instruments. The direct light emitted by the very first stellar clusters
and intermediate-mass black holes at z>10 will likely fall below JWST's
detection threshold. However, JWST could reveal a decline at the faint-end of
the high-redshift luminosity function, and thereby shed light on radiative and
other feedback effects that operate at these early epochs. JWST will also have
the sensitivity to detect individual SNe from beyond z=10. In a dedicated
survey lasting for several weeks, thousands of SNe could be detected at z>6,
with a redshift distribution extending to the formation of the very first stars
at z>15. Using these SNe as tracers may be the only method to map out the
earliest stages of the cosmic star-formation history. Finally, we point out
that studying the earliest objects at high redshift will also offer a new
window on the primordial power spectrum, on 100 times smaller scales than
probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", Astrophysics & Space Science Library, Eds. H.
Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008
A review of spatial causal inference methods for environmental and epidemiological applications
The scientific rigor and computational methods of causal inference have had
great impacts on many disciplines, but have only recently begun to take hold in
spatial applications. Spatial casual inference poses analytic challenges due to
complex correlation structures and interference between the treatment at one
location and the outcomes at others. In this paper, we review the current
literature on spatial causal inference and identify areas of future work. We
first discuss methods that exploit spatial structure to account for unmeasured
confounding variables. We then discuss causal analysis in the presence of
spatial interference including several common assumptions used to reduce the
complexity of the interference patterns under consideration. These methods are
extended to the spatiotemporal case where we compare and contrast the potential
outcomes framework with Granger causality, and to geostatistical analyses
involving spatial random fields of treatments and responses. The methods are
introduced in the context of observational environmental and epidemiological
studies, and are compared using both a simulation study and analysis of the
effect of ambient air pollution on COVID-19 mortality rate. Code to implement
many of the methods using the popular Bayesian software OpenBUGS is provided
- …