3,201 research outputs found

    Vacuum Fluctuations of Energy Density can lead to the observed Cosmological Constant

    Full text link
    The energy density associated with Planck length is ρuvLP4\rho_{uv}\propto L_P^{-4} while the energy density associated with the Hubble length is ρirLH4\rho_{ir}\propto L_H^{-4} where LH=1/HL_H=1/H. The observed value of the dark energy density is quite different from {\it either} of these and is close to the geometric mean of the two: ρvacρuvρir\rho_{vac}\simeq \sqrt{\rho_{uv} \rho_{ir}}. It is argued that classical gravity is actually a probe of the vacuum {\it fluctuations} of energy density, rather than the energy density itself. While the globally defined ground state, being an eigenstate of Hamiltonian, will not have any fluctuations, the ground state energy in the finite region of space bounded by the cosmic horizon will exhibit fluctuations Δρvac(LP,LH)\Delta\rho_{\rm vac}(L_P, L_H). When used as a source of gravity, this Δρ\Delta \rho should lead to a spacetime with a horizon size LHL_H. This bootstrapping condition leads naturally to an effective dark energy density Δρ(LuvLH)2H2/G\Delta\rho\propto (L_{uv}L_H)^{-2}\propto H^2/G which is precisely the observed value. The model requires, either (i) a stochastic fluctuations of vacuum energy which is correlated over about a Hubble time or (ii) a semi- anthropic interpretation. The implications are discussed.Comment: r pages; revtex; comments welcom

    Surface Density of Spacetime Degrees of Freedom from Equipartition Law in theories of Gravity

    Full text link
    I show that the principle of equipartition, applied to area elements of a surface which are in equilibrium at the local Davies-Unruh temperature, allows one to determine the surface number density of the microscopic spacetime degrees of freedom in any diffeomorphism invariant theory of gravity. The entropy associated with these degrees of freedom matches with the Wald entropy for the theory. This result also allows one to attribute an entropy density to the spacetime in a natural manner. The field equations of the theory can then be obtained by extremising this entropy. Moreover, when the microscopic degrees of freedom are in local thermal equilibrium, the spacetime entropy of a bulk region resides on its boundary.Comment: v1: 20 pages; no figures. v2: Sec 4 added; 23 page

    Why Does Gravity Ignore the Vacuum Energy?

    Get PDF
    The equations of motion for matter fields are invariant under the shift of the matter lagrangian by a constant. Such a shift changes the energy momentum tensor of matter by T^a_b --> T^a_b +\rho \delta^a_b. In the conventional approach, gravity breaks this symmetry and the gravitational field equations are not invariant under such a shift of the energy momentum tensor. I argue that until this symmetry is restored, one cannot obtain a satisfactory solution to the cosmological constant problem. I describe an alternative perspective to gravity in which the gravitational field equations are [G_{ab} -\kappa T_{ab}] n^an^b =0 for all null vectors n^a. This is obviously invariant under the change T^a_b --> T^a_b +\rho \delta^a_b and restores the symmetry under shifting the matter lagrangian by a constant. These equations are equivalent to G_{ab} = \kappa T_{ab} + Cg_{ab} where C is now an integration constant so that the role of the cosmological constant is very different in this approach. The cosmological constant now arises as an integration constant, somewhat like the mass M in the Schwarzschild metric, the value of which can be chosen depending on the physical context. These equations can be obtained from a variational principle which uses the null surfaces of spacetime as local Rindler horizons and can be given a thermodynamic interpretation. This approach turns out to be quite general and can encompass even the higher order corrections to Einstein's gravity and suggests a principle to determine the form of these corrections in a systematic manner.Comment: Invited Contribution to the IJMPD Special Issue on Dark Matter and Dark Energy edited by D.Ahluwalia and D. Grumiller. Appendix clarifies several conceptual and pedgogical aspects of surface term in Hilbert action; ver.2: references and some clarifications adde

    Polaronic state and nanometer-scale phase separation in colossal magnetoresistive manganites

    Full text link
    High resolution topographic images obtained by scanning tunneling microscope in the insulating state of Pr0.68Pb0.32MnO3 single crystals showed regular stripe-like or zigzag patterns on a width scale of 0.4 - 0.5 nm confirming a high temperature polaronic state. Spectroscopic studies revealed inhomogeneous maps of zero-bias conductance with small patches of metallic clusters on length scale of 2 - 3 nm only within a narrow temperature range close to the metal-insulator transition. The results give a direct observation of polarons in the insulating state, phase separation of nanometer-scale metallic clusters in the paramagnetic metallic state, and a homogeneous ferromagnetic state

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Determination of the effects of nozzle nonlinearities upon nonlinear stability of liquid propellant rocket motors

    Get PDF
    The research is reported concerning the development of a three-dimensional nonlinear nozzle admittance relation to be used as a boundary condition in the nonlinear combustion instability theories for liquid propellant rocket engines. The derivation of the nozzle wave equation and the application of the Galerkin method are discussed along with the nozzle response

    Holography of Gravitational Action Functionals

    Get PDF
    Einstein-Hilbert (EH) action can be separated into a bulk and a surface term, with a specific ("holographic") relationship between the two, so that either can be used to extract information about the other. The surface term can also be interpreted as the entropy of the horizon in a wide class of spacetimes. Since EH action is likely to just the first term in the derivative expansion of an effective theory, it is interesting to ask whether these features continue to hold for more general gravitational actions. We provide a comprehensive analysis of lagrangians of the form L=Q_a^{bcd}R^a_{bcd}, in which Q_a^{bcd} is a tensor with the symmetries of the curvature tensor, made from metric and curvature tensor and satisfies the condition \nabla_cQ^{abcd}=0, and show that they share these features. The Lanczos-Lovelock lagrangians are a subset of these in which Q^{abcd} is a homogeneous function of the curvature tensor. They are all holographic, in a specific sense of the term, and -- in all these cases -- the surface term can be interpreted as the horizon entropy. The thermodynamics route to gravity, in which the field equations are interpreted as TdS=dE+pdV, seems to have greater degree of validity than the field equations of Einstein gravity itself. The results suggest that the holographic feature of EH action could also serve as a new symmetry principle in constraining the semiclassical corrections to Einstein gravity. The implications are discussed.Comment: revtex 4; 17 pages; no figure

    An architecture for personalized systems based on web mining agents

    Get PDF
    [EN]The development of the present web systems is becoming a complex activity due to the need to integrate the last technologies in order to make more efficient and competitive applications. Endowing systems with personalized recommendation procedures contributes to achieve these objectives. In this paper, a web mining method for personalization is proposed. It uses the information already available from other users to discover patterns that are used later for making recommendations. The work deals with the problem of introducing new information items and new users who do not have a profile. We propose an architectural design of intelligent data mining agents for the system implementation
    corecore