3,707 research outputs found

    Random versus holographic fluctuations of the background metric. II. Note on the dark energies arising due to microstructure of space-time

    Full text link
    Over the last few years a certain class of dark-energy models decaying inversely proportional to the square of the horizon distance emerged on the basis either of Heisenberg uncertainty relations or of the uncertainty relation between the four-volume and the cosmological constant. The very nature of these dark energies is understood to be the same, namely it is the energy of background space/metric fluctuations. Putting together these uncertainty relations one finds that the model of random fluctuations of the background metric is favored over the holographic one.Comment: 3 page

    The hypothesis of path integral duality II: corrections to quantum field theoretic results

    Get PDF
    In the path integral expression for a Feynman propagator of a spinless particle of mass mm, the path integral amplitude for a path of proper length R(x,xgμν){\cal R}(x,x'| g_{\mu\nu}) connecting events xx and xx' in a spacetime described by the metric tensor gμνg_{\mu\nu} is exp[mR(x,xgμν)]\exp-[m {\cal R}(x,x'| g_{\mu\nu})]. In a recent paper, assuming the path integral amplitude to be invariant under the duality transformation R(LP2/R){\cal R} \to (L_P^2/{\cal R}), Padmanabhan has evaluated the modified Feynman propagator in an arbitrary curved spacetime. He finds that the essential feature of this `principle of path integral duality' is that the Euclidean proper distance (Δx)2(\Delta x)^2 between two infinitesimally separated spacetime events is replaced by [(Δx)2+4LP2][(\Delta x)^2 + 4L_P^2 ]. In other words, under the duality principle the spacetime behaves as though it has a `zero-point length' LPL_P, a feature that is expected to arise in a quantum theory of gravity. In the Schwinger's proper time description of the Feynman propagator, the weightage factor for a path with a proper time ss is exp(m2s)\exp-(m^2s). Invoking Padmanabhan's `principle of path integral duality' corresponds to modifying the weightage factor exp(m2s)\exp-(m^2s) to exp[m2s+(LP2/s)]\exp-[m^2s + (L_P^2/s)]. In this paper, we use this modified weightage factor in Schwinger's proper time formalism to evaluate the quantum gravitational corrections to some of the standard quantum field theoretic results in flat and curved spacetimes. We find that the extra factor exp(LP2/s)\exp-(L_P^2/s) acts as a regulator at the Planck scale thereby `removing' the divergences that otherwise appear in the theory. Finally, we discuss the wider implications of our analysis.Comment: 26 pages, Revte

    Cosmological production of H_2 before the formation of the first galaxies

    Get PDF
    Previous calculations of the pregalactic chemistry have found that a small amount of H_2, x[H_2]=n[H_2]/n[H] = 2.6e-6, is produced catalytically through the H^-, H_2^+, and HeH^+ mechanisms. We revisit this standard calculation taking into account the effects of the nonthermal radiation background produced by cosmic hydrogen recombination, which is particularly effective at destroying H^- via photodetachment. We also take into consideration the non-equilibrium level populations of H_2^+, which occur since transitions among the rotational-vibrational levels are slow compared to photodissociation. The new calculation predicts a final H_2 abundance of x[H_2] = 6e-7 for the standard cosmology. This production is due almost entirely to the H^- mechanism, with ~1 per cent coming from HeH^+ and ~0.004 per cent from H_2^+. We evaluate the heating of the diffuse pregalactic gas from the chemical reactions that produce H_2 and from rotational transitions in H_2, and find them to be negligible.Comment: 13 pages, 5 figures, MNRAS submitte

    Hawking radiation in different coordinate settings: Complex paths approach

    Full text link
    We apply the technique of complex paths to obtain Hawking radiation in different coordinate representations of the Schwarzschild space-time. The coordinate representations we consider do not possess a singularity at the horizon unlike the standard Schwarzschild coordinate. However, the event horizon manifests itself as a singularity in the expression for the semiclassical action. This singularity is regularized by using the method of complex paths and we find that Hawking radiation is recovered in these coordinates indicating the covariance of Hawking radiation as far as these coordinates are concerned.Comment: 18 pages, 2 figures, Uses IOP style file; final version; accepted in Class. Quant. Gra

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Short-distance regularity of Green's function and UV divergences in entanglement entropy

    Get PDF
    Reformulating our recent result (arXiv:1007.1246 [hep-th]) in coordinate space we point out that no matter how regular is short-distance behavior of Green's function the entanglement entropy in the corresponding quantum field theory is always UV divergent. In particular, we discuss a recent example by Padmanabhan (arXiv:1007.5066 [gr-qc]) of a regular Green's function and show that provided this function arises in a field theory the entanglement entropy in this theory is UV divergent and calculate the leading divergent term.Comment: LaTeX, 6 page

    Radiation from collapsing shells, semiclassical backreaction and black hole formation

    Full text link
    We provide a detailed analysis of quantum field theory around a collapsing shell and discuss several conceptual issues related to the emission of radiation flux and formation of black holes. Explicit calculations are performed using a model for a collapsing shell which turns out to be analytically solvable. We use the insights gained in this model to draw reliable conclusions regarding more realistic models. We first show that any shell of mass MM which collapses to a radius close to r=2Mr=2M will emit approximately thermal radiation for a period of time. In particular, a shell which collapses from some initial radius to a final radius 2M(1ϵ2)12M(1-\epsilon^2)^{-1} (where ϵ1\epsilon \ll 1) without forming a black hole, will emit thermal radiation during the period MtMln(1/ϵ2)M\lesssim t \lesssim M\ln (1/\epsilon^2). Later on (tMln(1/ϵ2)t\gg M \ln(1/\epsilon^2)), the flux from such a shell will decay to zero exponentially. We next study the effect of backreaction computed using the vacuum expectation value of the stress tensor on the collapse. We find that, in any realistic collapse scenario, the backreaction effects do \emph{not} prevent the formation of the event horizon. The time at which the event horizon is formed is, of course, delayed due to the radiated flux -- which decreases the mass of the shell -- but this effect is not sufficient to prevent horizon formation. We also clarify several conceptual issues and provide pedagogical details of the calculations in the Appendices to the paper.Comment: 26 pages, 6 figures, revtex4; v2 -- minor reformatting, some typos fixed, one reference added, to appear in PR

    Complex Effective Path: A Semi-Classical Probe of Quantum Effects

    Full text link
    We discuss the notion of an effective, average, quantum mechanical path which is a solution of the dynamical equations obtained by extremizing the quantum effective action. Since the effective action can, in general, be complex, the effective path will also, in general, be complex. The imaginary part of the effective action is known to be related to the probability of particle creation by an external source and hence we expect the imaginary part of the effective path also to contain information about particle creation. We try to identify such features using simple examples including that of effective path through the black hole horizon leading to thermal radiation. Implications of this approach are discussed.Comment: 20 pages; no figures; to appear in Phys.Rev.

    On the enigmatic Λ\Lambda - a true constant of spacetime

    Full text link
    Had Einstein followed the Bianchi differential identity for the derivation of his equation of motion for gravitation, Λ\Lambda would have emerged as a true new constant of spacetime on the same footing as the velocity of light? It is then conceivable that he could have perhaps made the most profound prediction that the Universe may suffer accelerated expansion some time in the future! Further we argue that its identification with the quantum vacuum energy is not valid as it should have to be accounted for like the gravitational field energy by enlarging the basic framework of spacetime and not through a stress tensor. The acceleration of the expansion of the Universe may indeed be measuring its value for the first time observationally.Comment: 4 pages, a comprehensive revision with much refinement and new insights, more references adde
    corecore