35 research outputs found
Computational Complexity of Atomic Chemical Reaction Networks
Informally, a chemical reaction network is "atomic" if each reaction may be
interpreted as the rearrangement of indivisible units of matter. There are
several reasonable definitions formalizing this idea. We investigate the
computational complexity of deciding whether a given network is atomic
according to each of these definitions.
Our first definition, primitive atomic, which requires each reaction to
preserve the total number of atoms, is to shown to be equivalent to mass
conservation. Since it is known that it can be decided in polynomial time
whether a given chemical reaction network is mass-conserving, the equivalence
gives an efficient algorithm to decide primitive atomicity.
Another definition, subset atomic, further requires that all atoms are
species. We show that deciding whether a given network is subset atomic is in
, and the problem "is a network subset atomic with respect to a
given atom set" is strongly -.
A third definition, reachably atomic, studied by Adleman, Gopalkrishnan et
al., further requires that each species has a sequence of reactions splitting
it into its constituent atoms. We show that there is a to decide whether a given network is reachably atomic, improving
upon the result of Adleman et al. that the problem is . We
show that the reachability problem for reachably atomic networks is
-.
Finally, we demonstrate equivalence relationships between our definitions and
some special cases of another existing definition of atomicity due to Gnacadja
Automated design of programmable enzyme-driven DNA circuits
Molecular programming allows for the bottom-up engineering of biochemical reaction networks in a controlled in vitro setting. These engineered biochemical reaction networks yield important insight in the design principles of biological systems and can potentially enrich molecular diagnostic systems. The DNA polymerase–nickase–exonuclease (PEN) toolbox has recently been used to program oscillatory and bistable biochemical networks using a minimal number of components. Previous work has reported the automatic construction of in silico descriptions of biochemical networks derived from the PEN toolbox, paving the way for generating networks of arbitrary size and complexity in vitro. Here, we report an automated approach that further bridges the gap between an in silico description and in vitro realization. A biochemical network of arbitrary complexity can be globally screened for parameter values that display the desired function and combining this approach with robustness analysis further increases the chance of successful in vitro implementation. Moreover, we present an automated design procedure for generating optimal DNA sequences, exhibiting key characteristics deduced from the in silico analysis. Our in silico method has been tested on a previously reported network, the Oligator, and has also been applied to the design of a reaction network capable of displaying adaptation in one of its components. Finally, we experimentally characterize unproductive sequestration of the exonuclease to phosphorothioate protected ssDNA strands. The strong nonlinearities in the degradation of active components caused by this unintended cross-coupling are shown computationally to have a positive effect on adaptation quality