9,876 research outputs found

    Three-dimensional Dirac oscillator in a thermal bath

    Full text link
    The thermal properties of the three-dimensional Dirac oscillator are considered. The canonical partition function is determined, and the high-temperature limit is assessed. The degeneracy of energy levels and their physical implications on the main thermodynamic functions are analyzed, revealing that these functions assume values greater than the one-dimensional case. So that at high temperatures, the limit value of the specific heat is three times bigger.Comment: 9 pages, 4 figures. Text improved, references added. Revised to match accepted version in Europhysics Letters

    Direct observation of melting in a 2-D superconducting vortex lattice

    Full text link
    Topological defects such as dislocations and disclinations are predicted to determine the twodimensional (2-D) melting transition. In 2-D superconducting vortex lattices, macroscopic measurements evidence melting close to the transition to the normal state. However, the direct observation at the scale of individual vortices of the melting sequence has never been performed. Here we provide step by step imaging through scanning tunneling spectroscopy of a 2-D system of vortices up to the melting transition in a focused-ion-beam nanodeposited W-based superconducting thin film. We show directly the transition into an isotropic liquid below the superconducting critical temperature. Before that, we find a hexatic phase, characterized by the appearance of free dislocations, and a smectic-like phase, possibly originated through partial disclination unbinding. These results represent a significant step in the understanding of melting of 2-D systems, with impact across several research fields, such as liquid crystal molecules, or lipids in membranes.Comment: Submitted to Nature Physic

    Treating some solid state problems with the Dirac equation

    Full text link
    The ambiguity involved in the definition of effective-mass Hamiltonians for nonrelativistic models is resolved using the Dirac equation. The multistep approximation is extended for relativistic cases allowing the treatment of arbitrary potential and effective-mass profiles without ordering problems. On the other hand, if the Schrodinger equation is supposed to be used, our relativistic approach demonstrate that both results are coincidents if the BenDaniel and Duke prescription for the kinetic-energy operator is implemented. Applications for semiconductor heterostructures are discussed.Comment: 06 pages, 5 figure

    Comparação entre colunas cromatográficas de diferentes tamanhos e tipos de partícula na análise de aflatoxinas em amendoim.

    Get PDF
    bitstream/item/74496/1/pub-195.pd
    corecore