42 research outputs found

    Líneas de Cronos y Aión: sobre la expresión del tiempo en el planeamiento urbano

    Get PDF
    La presente investigación aborda el problema contemporáneo de la conceptualización de la expresión gráfica encaminada a la intervención en lo urbano. Su objetivo es reflexionar sobre la actividad creativa orientada a la producción de espacio y tiempo. Para ello, se examina la capacidad de los diagramas de dar respuesta a uno de los grandes retos de la planificación urbana: La incorporación del cambio, de la diferencia, de la duraciónThis article is about the contemporary problem of the graphic expression conceptualization of the the urban. The aim is to reflex on the creative activity oriented to the production of space and time from creative approaches. With that aim, it is examined the ability of diagrams to deal one of the big challenge of urban planning: The incorporation of change, the difference, la durée

    Imágenes del pensamiento urbano: diagramas que configuran nuestro espacio

    Get PDF
    El presente artículo aborda el problema de la conceptualización y expresión gráfica de lo urbano, poniendo el foco en los diagramas en tanto que procesos mentales que posibilitan la formación de estructura.En ese sentido, los diagramas son aquí analizados como el elemento común a nuestras imágenes del pensamientoy a los esquemas dinámicos que trazamos para configurar el espacio urbano.This article is about the problem of the conceptualization and graphic expression of the urban. We focus on the diagrams as mental processes that make possible the formation of structure.In that sense, diagrams are analyzed as the common element to our images of thought, and the dynamic schemes that we draw to configure the urban space

    Máquinas para la producción del espacio: los diagramas como herramientas del planeamiento relacional

    Get PDF
    No habitamos ciudades sino territorios, la ciudad-territorio que no es árbol, sino rizoma, sistema que produce lo múltiple, extensión superficial ramificada en todas direcciones (redes) que, en sus zonas de intensidad, genera concreciones (nodos, centralidades). ¿Cómo articular esta ciudad que se expande indefinida e improgramablemente? Quizás desde un urbanismo cuyo objetivo no sea la representación de la Idea, sino la producción inmanente de espacio dotado de sentido. Urbanismo al servicio de la expresión de la subjetividad a través de códigos ecológicos proyectados sobre el territorio para garantizar la sostenibilidad de sus potenciales. Se investiga así un planeamiento cuyo papel es la modelización del campo de juego: Establecer trazados diagramáticos entendidos como expresión gráfica y procedimental para dotar de infraestructura relacional a la ciudad contemporánea. Diagramas que son el resultado de un debilitamiento de su clásica armazón geométrica, en beneficio de lógicas integradoras de las tres ecologías (medioambiental, social y mental).We do not habit cities, but territories, the city-territory that is not a tree but rhizome, a system that produce the multiplicity, a superficial extension bifurcated in all directions (networks) that, in its zones of intensity, generates concretions (nodes, centralities). How can we articulate this city that grows undefined and with no program? Perhaps with an urbanism which aiming not to the representation of the Idea, but to the immanent production of space and sense. Urbanism for the expression of the subjectivity through ecological codes projected on the territories, to ensure the sostenibility of their potentialities. Thereby, that investigation is about a planning whose role is the modelization of the field, to define diagramatic outlines as graphics and procedimental expression for outfit of relational infrastructure to the contemporary city. Diagrams which result of the weakening of their classic geometric structure, for the integration of the environmental, social and mental ecologies

    Líneas de jerarquía y ensamblaje. Sobre el elemento mínimo del planeamiento urbano

    Get PDF
    Ponència presentada a: Session 4: Etnografías, fenomenología, fenomenología social y dialogía social / Ethnographies in the studios, phenomenology, social dialog

    Caracterización de microencapsulados aplicados sobre materiales textiles

    Full text link
    La aplicación de microencapsulados a los textiles no es una aplicación que esté tan extendida como en otros campos, como puedan ser las industrias farmacéuticas, agroalimentarias y cosméticas. Los microencapsulados son una nueva forma de obtener acabados textiles que resultan de la aplicaciónsobre los tejidos de estos productos lo que proporciona "acabados no convencionales". La microencapsulación ha permitido la obtención de tejidos con fragancias y perfumes resistentes a los lavados. Los microencapsulados para aplicaciones textiles, a diferencia de las utilizadas en farmacia, no necesitan membranas solubles, salvo excepciones, ya que los principios activos de los núcleos de las microcápsulas, se liberan por rotura de la cápsula, o por permeabilidad de la misma; esto supone una diferencia importante con el resto de fabricaciones de microcápsulas, así como en las características de los polímeros a utilizar para las membranas, lo que nos proporciona un motivo de estudio. El uso continuado, de tejidos con microencapsulados conteniendo una materia activ cuyo efecto se manifiesta por rotura de algunas capsulas, evidentemente, genera una degradación y una pérdida del efecto transmitido y será todavía mayor, si se le suman los efectos de los mantenimientos. En este trabajo se ha determinado la degradación de las microcápsulas (sobre tejidos), en función del uso y el mantenimiento. Para ello se han preparado tejidos con concentraciones variables de un mismo producto (aroma microencapsulado) y sometido a diferentes ensayos. En la aplicación de los microencapsulados sobre los textiles, se han realizado ensayos, exclusivamente por impregnación, puesto que es el procedimiento que mejores resultados nos ha proporcionado. Como trabajo previo se han analizado las características de los productos microencapsulados comerciales, determinando el tamaño medio de las microcápsulas, la cantidad de materia activa por eliminación de agua, su comportamiento térmico mediante calorimetría diMonllor Pérez, P. (2007). Caracterización de microencapsulados aplicados sobre materiales textiles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1896Palanci

    BLEACHING NEPTUNE BALLS

    Get PDF
    Posidonia Oceanic is a seaweed from Mediterranean Sea and it is more concentrated at the Balerian SEA. This implies the Valencian Community also. It forms vaste underwater meadows in the sea and are part of the Mediterranean ecosystem. It is a sea-grass specie with fruits and flowers. Leaves are ribbon-like and they grow in winter and at the end of summer some of them are separated and arrive to some sea line. Fuit is separated and can floate, it is known as “the olive of the sea” mainly in Italy, or as the Neptune Balls. As it can be used in different fields, it is is being studied in order ro have the precitice tests. Some authors have reported the manufacturing of fully bio-based comites with a gluten matrix by hot-press molding. And it has been considered as an effective insulator for building industry or even though to determine the presence of mercure in the Mediterranean sea some years ago. As many applications can be designed from that fibers, it has been considered to be bleached in order to used them in fashionable products. Consequently, its original brown color is not the most suitable one and it should be bleached as many other cellulosic fibers. The aim of this paper is to bleache neptune balls however, the inner fibers were not accessible at all and it implied not to bleach the inner fibers in the neptune ball. Further studiesd will consider bleaching the individualized fibers

    A comparison between padding and bath exhaustion to apply microcapsules onto cotton

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10570-015-0600-8[EN] The use of Microcapsules has increased in the textile sector. They have been applied as a possible means of introducing new products to textiles, such as insect repellents, antibiotics, skin moisturizers, etc. Microencapsulation technology has improved the fragrance durability on fabrics. Historically, the durability of the fragrance was poor, especially once the fabric had been washed. Microcapsules have been used in textiles for many years, however their previous characterization, adhesion behaviour and permanence on the fabrics are not well known. Nowadays the majority of textile industries are not able to characterize commercial products, or to study the process of adhering the microcapsule to the fibre's surface nor their functionality. Thus, the characterization of microencapsulated fabrics with different active core and the knowledge of the various application processes becomes a major challenge in the field of microcapsules use. There are various industrial processes to apply microcapsules, but determining optimal amounts of products, temperature, conditions and other process variables are an important challenge for the textile sector in order to achieve the highest depositions and retention of microcapsules. This work is focused on determining and quantifying presence fragrance microcapsules when applied onto fabrics by padding and by bath exhaustion and determining which method is the most effective. Consequently, diverse analysis techniques such as microscopy (SEM), spectroscopy FTIR and XPS have been used. We concluded that proposed techniques seem to be useful to compare fabrics treated with microcapsules. Results demonstrate that padding application gives better yields than bath exhaustion.Bonet Aracil, MA.; Monllor Pérez, P.; Capablanca Francés, L.; Gisbert Paya, J.; Díaz-García, P.; Montava Seguí, IJ. (2015). A comparison between padding and bath exhaustion to apply microcapsules onto cotton. Cellulose. 22(3):2117-2127. doi:10.1007/s10570-015-0600-8S21172127223Bonet M, Quijada C, Muñoz S, Cases F (2004) Characterization of ethylcellulose with different degrees of substitution (DS): a diffuse-reflectance infrared study. Can J Anal Sci Spectrosc 49(4):234–239Bonet M, Capablanca L, Monllor P, Díaz P, Montava I (2012) Studying bath exhaust as a method to apply microcapsules on fabrics. J Text Inst 103(6):629–635Buchert J, Pere LS, Johanson JM, Campbell J (2001) Analysis of surface chemistry of linen and cotton fabrics. Text Res J 71:626–629Fras L, Johanson LS, Stenius P, Laine P, Stana-Kleinscheck K, Ribitsch V (2005) Analysis of theoxidation of cellulosefibresbytitration and XPS. Colloids Surf A 260:101–108Gisbert G, Ibañez F, Bonet M, Monllor P, Díaz P, Montava I (2009) Increasing hydration of the epidermis by microcapsules in sterilized products. J Appl Polym Sci 113(4):2282–2286Hong K, Park S (1999) Melamine resin microcapsules containing fragant oil: synthesis and characterization. J Appl Polym Sci 58:128–131Jing HU, Zuobing X, Rujun Z, Shuangshuang M, Mingxi W, Zhen L (2011) Properties of aroma sustained-release cotton fabric with rose fragrance nanocapsule. Chin J Chem Eng 19(3):523–528Kokot S, Czarnik-Matusewicz C, Ozaki Y (2002) Two- dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose. Biopolymers 67:456–469Kondo T, Sawatari C, Manley RJ, Gray DG (1994) Characterization of hydrogen bonding in cellulose synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 27(1):210–215Miró Specos MM, Escobar G, Marino P, Puggia C, Defain Tesoriero MV, Hermida L (2010) Aroma finishing of cotton fabrics by means of microencapsulation techniques. J Ind Text 40(1):13–32Monllor P, Bonet M, Cases F (2007) Characterization of the behaviour of flavour microcapsules in cotton fabrics. Eur Polym J 43:2481–2490Monllor P, Bonet M, Sánchez L, Cases F (2009) Thermal behaviour of microencapsulated flavours when applied to cellulose fabrics. Text Res J 79(4):365–380Monllor P, Capablanca L, Gisbert J, Díaz P, Bonet M (2010) Improvement of microcapsule adhesion to fabrics. Text Res J 80(7):631–635Nelson G (1991) Microencapsulates in textile coloration and finishing. Rev Prog Color Relat Top 21:72–85Nelson G (2001) Microencapsulation in textile finishing. Rev Prog Color Relat Top 321:57–64Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62Rodrigues SN, Fernandes I, Martins IM, Mata VG, Barreiro F, Rodrigues AE (2008) Microencapsulation of limonene for textiles application. Ind Eng Chem Res 47:4142–4147Rodrigues SN, Martins, IM, Fernades IP, Gomes PB, Mata VG, Barreiro MF, Rodrigues AE (2009) Scentfashion®: microencapsulated perfumes for textile application. Chem Eng J 149(1–3):463–472. ISSN:1385-8947Sócrates G (1997) In: Infrared characteristic group frequencies. Tables and charts, 2nd ednTopalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A 296:76–85Wilson RC, Pfhol WF (2000) Study of crosslinking reactions of melamine/formaldehyde resin with hydroxyl functional polyester by generalized 2-D infrared spectroscopy. Vib Spectrosc 23:13–22Zhang H, Wang X (2009) Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloids Surf A 332:129–13

    Studying bath exhaustion as a method to apply microcapsules on fabrics

    Full text link
    [EN] Textile industry is one of the fields that have increased their consumption of microcapsules. They can be applied to textiles using different methods, such as, padding, bath exhaustion, spraying and foaming. Although the most extended industrial application is by padding, commercial brands also suggest bath exhaustion as a possible procedure. In the research reported herein, bath exhaustion treatments are compared to padding. X-ray photoelectronic spectroscopy (XPS) technique showed that it was a suitable method to detect microcapsules¿presence on fabric surface. Results reported that high concentrations were required to obtain similar behaviours to those of padding. Moreover, we suggested reusing bath exhaustion baths, in order to minimise the loss of so much product in wastewater. We concluded that it was not possible because microcapsules de flate following contact with water for a per- iod of time, and what is more interesting, microcapsule preparation must be done immediately before use, so as to avoid microcapsule de flation due to contact with water.Authors gratefully acknowledge the financial support received by this research project from the Spanish government in the programme "Plan Nacional 2008-2011" reference Mat 2009-14210-C02-01.Bonet Aracil, MA.; Capablanca Francés, L.; Monllor Pérez, P.; Díaz García, P.; Montava Seguí, IJ. (2012). Studying bath exhaustion as a method to apply microcapsules on fabrics. Journal of the Textile Institute. 103(6):629-635. doi:10.1080/00405000.2011.596665S6296351036Chang, C. P., Yamamoto, T., Kimura, M., Sato, T., Ichikawa, K., & Dobashi, T. (2003). Release characteristics of an azo dye from poly(ureaurethane) microcapsules. Journal of Controlled Release, 86(2-3), 207-211. doi:10.1016/s0168-3659(02)00366-8Fan, Y. F., Zhang, X. ., Wang, X. ., Li, J., & Zhu, Q. . (2004). Super-cooling prevention of microencapsulated phase change material. Thermochimica Acta, 413(1-2), 1-6. doi:10.1016/j.tca.2003.11.006Giroud, F., Pernot, J. M., Brun, H., & Pouyet, B. (1995). Optimization of microencapsulation of acrylic adhesives. Journal of Microencapsulation, 12(4), 389-400. doi:10.3109/02652049509087251Gisbert, J., Ibañez, F., Bonet, M., Monllor, P., Díaz, P., & Montava, I. (2009). Increasing hydration of the epidermis by microcapsules in sterilized products. Journal of Applied Polymer Science, 113(4), 2282-2286. doi:10.1002/app.30210Hawlader, M. N. A., Uddin, M. S., & Khin, M. M. (2003). Microencapsulated PCM thermal-energy storage system. Applied Energy, 74(1-2), 195-202. doi:10.1016/s0306-2619(02)00146-0Kapuśniak, J., & Tomasik, P. (2006). Lipid microencapsulation in starch. Journal of Microencapsulation, 23(3), 341-348. doi:10.1080/02652040600687571Li, S., Lewis, J. E., Stewart, N. M., Qian, L., & Boyter, H. (2008). Effect of finishing methods on washing durability of microencapsulated aroma finishing. Journal of the Textile Institute, 99(2), 177-183. doi:10.1080/00405000701489701Long, Y., York, D., Zhang, Z., & Preece, J. A. (2009). Microcapsules with low content of formaldehyde: preparation and characterization. Journal of Materials Chemistry, 19(37), 6882. doi:10.1039/b902832cMadene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release - a review. International Journal of Food Science and Technology, 41(1), 1-21. doi:10.1111/j.1365-2621.2005.00980.xMonllor, P., Bonet, M. A., & Cases, F. (2007). Characterization of the behaviour of flavour microcapsules in cotton fabrics. European Polymer Journal, 43(6), 2481-2490. doi:10.1016/j.eurpolymj.2007.04.004Monllor, P., Sánchez, L., Cases, F., & Bonet, M. A. (2009). Thermal Behavior of Microencapsulated Fragrances on Cotton Fabrics. Textile Research Journal, 79(4), 365-380. doi:10.1177/0040517508097520Monllor, P., Capablanca, L., Gisbert, J., Díaz, P., Montava, I., & Bonet, Á. (2009). Improvement of Microcapsule Adhesion to Fabrics. Textile Research Journal, 80(7), 631-635. doi:10.1177/0040517509346444Nelson, G. (2008). Microencapsulation in textile finishing. Review of Progress in Coloration and Related Topics, 31(1), 57-64. doi:10.1111/j.1478-4408.2001.tb00138.xNelson, G. (2002). Application of microencapsulation in textiles. International Journal of Pharmaceutics, 242(1-2), 55-62. doi:10.1016/s0378-5173(02)00141-2Paya, J.G., Bonet, M.A., Aboy, P.M.R. & Perez, P.M. (2010). Insect Repellent Textile. US Patent 2010/0183690 A1.Rjiba, N., Nardin, M., Drean, J.-Y., & Frydrych, R. (2009). Comparison of surfaces properties of different types of cotton fibers by inverse gas chromatography. Journal of Polymer Research, 17(1), 25-32. doi:10.1007/s10965-009-9286-7SAWADA, K., & URAKAWA, H. (2005). Preparation of photosensitive color-producing microcapsules utilizing in situ polymerization method. Dyes and Pigments, 65(1), 45-49. doi:10.1016/j.dyepig.2004.06.021Stolnik, S., Illum, L., & Davis, S. S. (1995). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2-3), 195-214. doi:10.1016/0169-409x(95)00025-3Topalovic, T., Nierstrasz, V. A., Bautista, L., Jocic, D., Navarro, A., & Warmoeskerken, M. M. C. G. (2007). Analysis of the effects of catalytic bleaching on cotton. Cellulose, 14(4), 385-400. doi:10.1007/s10570-007-9120-5Wegmüller, R., Zimmermann, M. B., Bühr, V. G., Windhab, E. J., & Hurrell, R. F. (2006). Development, Stability, and Sensory Testing of Microcapsules Containing Iron, Iodine, and Vitamin A for Use in Food Fortification. Journal of Food Science, 71(2), S181-S187. doi:10.1111/j.1365-2621.2006.tb08923.xFras Zemljič, L., Strnad, S., Šauperl, O., & Stana-Kleinschek, K. (2009). Characterization of Amino Groups for Cotton Fibers Coated with Chitosan. Textile Research Journal, 79(3), 219-226. doi:10.1177/0040517508093592ZHANG, Z. (1999). Mechanical strength of single microcapsules determined by a novel micromanipulation technique. Journal of Microencapsulation, 16(1), 117-124. doi:10.1080/026520499289365Zhang, X., Tao, X., Yick, K., & Wang, X. (2003). Structure and thermal stability of microencapsulated phase-change materials. Colloid and Polymer Science, 282(4), 330-336. doi:10.1007/s00396-003-0925-

    Thermal behaviour of microencapsulated fragances on cotton fabrics

    Full text link
    Microencapsulated products are very common in some fields, such as pharmacy, and the textile industry has recently incorporated them into their products. First, this research assessed the presence of fragrance microcapsules on cotton fabric using different padding applications and evaluated them using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). When the OH stretching region between 3700-3000 cm(-1) from spectra was examined, we proposed some area ratios to quantify the microcapsules' presence on the fabric. The ratios proposed showed that when the concentration of microcapsules in the padding bath increased, their value increased too. Secondly, we analyzed the effect that thermal treatment can cause on microcapsules. This was undertaken using hot air at 120 degrees C, 140 degrees C and 160 degrees C, or by ironing the fabric impregnated with microcapsules at 110 degrees C, 150 degrees C and 200 degrees C, by ironing 1, 5 and 10 times on the analyzed zone. It was found that when the temperature was higher than 120 degrees C, microcapsules were deflated and damaged. This could be seen using SEM images and checked using FTIR analysis.The authors are grateful to COLOR CENTER Company for kindly providing the microencapsulated samples used in this study. The Universidad Politecnica de Valencia also deserves acknowledgement for its financial support in the form of 'Interdisciplinary projects research line' for the research project from which these results derive. We acknowledge central service of microscopy, and the R&D+i Linguistic Assistance Office, at the Universidad Politecnica de Valencia for their help in revising and correcting this paper.Monllor Pérez, P.; Sánchez Nacher, L.; Cases Iborra, FJ.; Bonet Aracil, MA. (2009). Thermal behaviour of microencapsulated fragances on cotton fabrics. Textile Research Journal. 79(4):365-380. doi:10.1177/0040517508097520S365380794Hong, K., & Park, S. (1999). Melamine resin microcapsules containing fragrant oil: synthesis and characterization. Materials Chemistry and Physics, 58(2), 128-131. doi:10.1016/s0254-0584(98)00263-6Chao-Xia, W., & Shui-Lin, C. (2004). Anchoring beta-cyclodextrin to retain fragrances on cotton by means of heterobifunctional reactive dyes. Coloration Technology, 120(1), 14-18. doi:10.1111/j.1478-4408.2004.tb00200.xNelson, G. (2008). Microencapsulates in textile coloration and finishing. Review of Progress in Coloration and Related Topics, 21(1), 72-85. doi:10.1111/j.1478-4408.1991.tb00082.xNelson, G. (2008). Microencapsulation in textile finishing. Review of Progress in Coloration and Related Topics, 31(1), 57-64. doi:10.1111/j.1478-4408.2001.tb00138.xNelson, G. (2002). Application of microencapsulation in textiles. International Journal of Pharmaceutics, 242(1-2), 55-62. doi:10.1016/s0378-5173(02)00141-2Park, S.-J., Shin, Y.-S., & Lee, J.-R. (2001). Preparation and Characterization of Microcapsules Containing Lemon Oil. Journal of Colloid and Interface Science, 241(2), 502-508. doi:10.1006/jcis.2001.7727Xu, Y., & Du, Y. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics, 250(1), 215-226. doi:10.1016/s0378-5173(02)00548-3Ré, M. ., & Biscans, B. (1999). Preparation of microspheres of ketoprofen with acrylic polymers by a quasi-emulsion solvent diffusion method. Powder Technology, 101(2), 120-133. doi:10.1016/s0032-5910(98)00163-6Moya, S., Sukhorukov, G. ., Auch, M., Donath, E., & Möhwald, H. (1999). Microencapsulation of Organic Solvents in Polyelectrolyte Multilayer Micrometer-Sized Shells. Journal of Colloid and Interface Science, 216(2), 297-302. doi:10.1006/jcis.1999.6286Wilson, R. C., & Pfohl, W. F. (2000). Study of cross-linking reactions of melamine/formaldehyde resin with hydroxyl functional polyester by generalized 2-D infrared spectroscopy. Vibrational Spectroscopy, 23(1), 13-22. doi:10.1016/s0924-2031(99)00072-7Bhandari, B., D’Arcy, B., & Young, G. (2001). Flavour retention during high temperature short time extrusion cooking process: a review. International Journal of Food Science and Technology, 36(5), 453-461. doi:10.1046/j.1365-2621.2001.00495.xYuan, L., Liang, G., Xie, J., & He, S.-B. (2007). Synthesis and characterization of microencapsulated dicyclopentadiene with melamine–formaldehyde resins. Colloid and Polymer Science, 285(7), 781-791. doi:10.1007/s00396-006-1621-5Luo, W., Yang, W., Jiang, S., Feng, J., & Yang, M. (2007). Microencapsulation of decabromodiphenyl ether by in situ polymerization: Preparation and characterization. Polymer Degradation and Stability, 92(7), 1359-1364. doi:10.1016/j.polymdegradstab.2007.03.004Monllor, P., Bonet, M. A., & Cases, F. (2007). Characterization of the behaviour of flavour microcapsules in cotton fabrics. European Polymer Journal, 43(6), 2481-2490. doi:10.1016/j.eurpolymj.2007.04.004Muzzarelli, C., Stanic, V., Gobbi, L., Tosi, G., & Muzzarelli, R. A. A. (2004). Spray-drying of solutions containing chitosan together with polyuronans and characterisation of the microspheres. Carbohydrate Polymers, 57(1), 73-82. doi:10.1016/j.carbpol.2004.04.00

    Improvement of microcapsules adhesion to fabrics

    Full text link
    [EN] The presence of microcapsules has increased in the textile field. They have been applied as a possible means of introducing new products to textiles, such as fragrances, antibiotics, skin hydrants, etc. This work studied the influence of resin on the adhesion of microcapsules to cotton fabrics. To paste microcapsules to fabrics, they should be in contact with a bath which contains microcapsules, resin and water. Different concentrations of resin were applied to a fragrance microcapsule bath by impregnation. This research focuses on determining the influence of resin quantity on the microcapsule resistance to washing out of the fabrics during washing treatments. Two experimental techniques, scanning electron microscopy and counter apparatus, were used to determinate this influence. We conclude that with a higher quantity of resin, more microcapsules remain on the fabric surface. It was shown that longer microcapsules are washed out of the fabric faster than smaller microcapsules.Financial support from the Valencian Regional Government in the program of IMPIVA for increasing competitiveness in Valencia Companies ref: IMPCNG/2008/5, is gratefully acknowledged. The authors are also grateful to COLOR CENTER Company for kindly providing the microencapsulated samples used in this study.Monllor Pérez, P.; Capablanca Francés, L.; Gisbert Paya, J.; Díaz-García, P.; Montava Seguí, IJ.; Bonet Aracil, MA. (2010). Improvement of microcapsules adhesion to fabrics. Textile Research Journal. 80(7):631-635. https://doi.org/10.1177/004051750935644463163580
    corecore