6 research outputs found
Recommended from our members
Dark Energy Survey year 3 results: cosmology with moments of weak lensing mass maps
We present a cosmological analysis using the second and third moments of the weak lensing mass (convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey. The survey spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to reconstruct the convergence field. The second moment of the convergence as a function of smoothing scale contains information similar to standard shear 2-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The data is analyzed in the context of the ΛCDM model, varying five cosmological parameters and 19 nuisance parameters modeling astrophysical and measurement systematics. Our modeling of the observables is completely analytical, and has been tested with simulations in our previous methodology study. We obtain a 1.7% measurement of the amplitude of fluctuations parameter S8σ8(ωm/0.3)0.5=0.784±0.013. The measurements are shown to be internally consistent across redshift bins, angular scales, and between second and third moments. In particular, the measured third moment is consistent with the expectation of gravitational clustering under the ΛCDM model. The addition of the third moment improves the constraints on S8 and ωm by ∼15% and ∼25% compared to an analysis that only uses second moments. We compare our results with Planck constraints from the cosmic microwave background, finding a 2.2-2.8σ tension in the full parameter space, depending on the combination of moments considered. The third moment, independently, is in 2.8σ tension with Planck, and thus provides a cross-check on the analyses of 2-point correlations
Recommended from our members
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices
Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on S8=σ8ωm/0.3 at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level
Recommended from our members
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. II. Cross-correlation measurements and cosmological constraints
Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg2 SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of ωm=0.272-0.052+0.032 and S8σ8ωm/0.3=0.736-0.028+0.032 (ωm=0.245-0.044+0.026 and S8=0.734-0.028+0.035) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find ωm=0.270-0.061+0.043 and S8=0.740-0.029+0.034. Our constraints on S8 are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck
Recommended from our members
Dark Energy Survey Year 3 results: Constraints on extensions to ΛcDM with weak lensing and galaxy clustering
We constrain six possible extensions to the Λ cold dark matter (CDM) model using measurements from the Dark Energy Survey's first three years of observations, alone and in combination with external cosmological probes. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data vectors and blind analyses of real data to validate the robustness of our results to astrophysical and modeling systematic errors. In many cases, constraining power is limited by the absence of theoretical predictions beyond the linear regime that are reliable at our required precision. The ΛCDM extensions are dark energy with a time-dependent equation of state, nonzero spatial curvature, additional relativistic degrees of freedom, sterile neutrinos with eV-scale mass, modifications of gravitational physics, and a binned σ8(z) model which serves as a phenomenological probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find (wp,wa)=(-0.99-0.17+0.28,-0.9±1.2) at 68% confidence with zp=0.24 from the DES measurements alone, and (wp,wa)=(-1.03-0.03+0.04,-0.4-0.3+0.4) with zp=0.21 for the combination of all data considered. Curvature constraints of ωk=0.0009±0.0017 and effective relativistic species Neff=3.10-0.16+0.15 are dominated by external data, though adding DES information to external low-redshift probes tightens the ωk constraints that can be made without cosmic microwave background observables by 20%. For massive sterile neutrinos, DES combined with external data improves the upper bound on the mass meff by a factor of 3 compared to previous analyses, giving 95% limits of (ΔNeff,meff)≤(0.28,0.20 eV) when using priors matching a comparable Planck analysis. For modified gravity, we constrain changes to the lensing and Poisson equations controlled by functions ς(k,z)=ς0ωΛ(z)/ωΛ,0 and μ(k,z)=μ0ωΛ(z)/ωΛ,0, respectively, to ς0=0.6-0.5+0.4 from DES alone and (ς0,μ0)=(0.04±0.05,0.08-0.19+0.21) for the combination of all data, both at 68% confidence. Overall, we find no significant evidence for physics beyond ΛCDM
Recommended from our members
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III. Combined cosmological constraints
We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT+Planck CMB lensing, we find ωm=0.344±0.030 and S8σ8(ωm/0.3)0.5=0.773±0.016, assuming ΛCDM. When additionally combining with measurements of the CMB lensing autospectrum, we find ωm=0.306-0.021+0.018 and S8=0.792±0.012. The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the redmagic galaxies and high-redshift maglim galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems
Recommended from our members
Dark Energy Survey Year 3 results: cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample
The cosmological information extracted from photometric surveys is most robust when multiple probes of the large scale structure of the Universe are used. Two of the most sensitive probes are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the way galaxies trace matter (the galaxy bias factor). The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 deg2 of the Dark Energy Survey's first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies, especially selected to optimize such combination, and 100 million background shapes. We consider two flat cosmological models, the Standard Model with dark energy and cold dark matter (ΛCDM) a variation with a free parameter for the dark energy equation of state (wCDM). Both models are marginalized over 25 astrophysical and systematic nuisance parameters. In ΛCDM we obtain for the matter density ωm=0.320-0.034+0.041 and for the clustering amplitude S8σ8(ωm/0.3)0.5=0.778-0.031+0.037, at 68% C.L. The latter is only 1σ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In wCDM we find ωm=0.32-0.046+0.044, S8=0.777-0.051+0.049 and dark energy equation of state w=-1.031-0.379+0.218. We find that including smaller scales, while marginalizing over nonlinear galaxy bias, improves the constraining power in the ωm-S8 plane by 31% and in the ωm-w plane by 41% while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3×2pt)