2,493 research outputs found
Detailed stratified GWAS analysis for severe COVID-19 in four European populations.
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1)
Emergency Physician Treatment of Acute Stroke with Recombinant Tissue Plasminogen Activator: A Retrospective Analysis
Stroke teams are advocated for the rapid treatment of patients who have acute ischemic stroke (AIS) with recombinant tissue plasminogen activator (rt-PA). An alternate model uses existing ED resources with specialist consultation as needed. Objectives: To evaluate the treatment of AIS with rt-PA in this alternate ED model. Methods: A retrospective observational review was performed of consecutive patients with AIS treated with rt-PA at four hospitals affiliated with an emergency medicine residency. Emergency physicians (EPs) were directly responsible for the treatment of all patients according to predefined guidelines. Records were evaluated from the implementation of the guidelines through December 15, 1997. Results: 37 patients with AIS received rt-PA. Mean age ± SD was 63 ± 16 years (range 22-87), with 25 (68%) male. Patients presented 67 ± 29 minutes after stroke onset. After ED arrival, they were seen by the EP in 14 ± 13 minutes, had CT in 46 ± 22 minutes, and were treated in 97 ± 35 minutes. Neurologist consultation occurred in the department for nine patients (24.3%), and by telephone for 14 (37.8%). Symptomatic intracerebral hemorrhage (ICH) occurred in four (10.8%, 95% CI = 0.8% to 20.8%). There were two deaths, neither associated with ICH. Neurologic outcome at discharge compared with presentation in survivors was normal for four patients (11.4%), improved for 16 (45.7%), unchanged for ten (28.6%), and worse for five (14.3%). Conclusions: In this analysis, EPs, with specialty consultation as required, successfully identified patients with AIS and delivered rt-PA with satisfactory outcomes. Important elements of this model include early patient identification, preestablished protocols, and rapid access to CT scanning and interpretation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71596/1/j.1553-2712.1999.tb00416.x.pd
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Publisher Copyright: © The Author(s) 2022.Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ∼0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Peer reviewe
Training emergency services’ dispatchers to recognise stroke: an interrupted time-series analysis
Background: Stroke is a time-dependent medical emergency in which early presentation to specialist care reduces death and dependency. Up to 70% of all stroke patients obtain first medical contact from the Emergency Medical Services (EMS). Identifying ‘true stroke’ from an EMS call is challenging, with over 50% of strokes being misclassified.
The aim of this study was to evaluate the impact of the training package on the recognition of stroke by Emergency Medical Dispatchers (EMDs).
Methods: This study took place in an ambulance service and a hospital in England using an interrupted time-series
design. Suspected stroke patients were identified in one week blocks, every three weeks over an 18 month period,
during which time the training was implemented. Patients were included if they had a diagnosis of stroke (EMS or
hospital). The effect of the intervention on the accuracy of dispatch diagnosis was investigated using binomial
(grouped) logistic regression.
Results: In the Pre-implementation period EMDs correctly identified 63% of stroke patients; this increased to 80%
Post-implementation. This change was significant (p=0.003), reflecting an improvement in identifying stroke patients
relative to the Pre-implementation period both the During-implementation (OR=4.10 [95% CI 1.58 to 10.66]) and Post-implementation (OR=2.30 [95% CI 1.07 to 4.92]) periods. For patients with a final diagnosis of stroke who had been dispatched as stroke there was a marginally non-significant 2.8 minutes (95% CI −0.2 to 5.9 minutes, p=0.068)reduction between Pre- and Post-implementation periods from call to arrival of the ambulance at scene.
Conclusions: This is the first study to develop, implement and evaluate the impact of a training package for EMDs with
the aim of improving the recognition of stroke. Training led to a significant increase in the proportion of stroke patients dispatched as such by EMDs; a small reduction in time from call to arrival at scene by the ambulance also appeared likely. The training package has been endorsed by the UK Stroke Forum Education and Training, and is free to access on-line
Insulin degludec is not associated with a delayed or diminished response to hypoglycaemia compared with insulin glargine in type 1 diabetes: a double-blind randomised crossover study
Aims/hypothesis: Insulin degludec (Des(B30)LysB29(γ-Glu Nε-hexadecandioyl) human insulin; IDeg) is a new basal insulin with an ultra-long flat action profile. The acute physiological responses to hypoglycaemia with IDeg and insulin glargine (A21Gly,B31Arg,B32Arg human insulin; IGlar) were compared.
Methods: Twenty-eight adult type 1 diabetic patients with normal hypoglycaemia awareness (age = 41 ± 12 years, HbA1c = 7.8 ± 0.6% [62.8 ± 7 mmol/mol]) were randomised to once-daily IDeg or IGlar for 5 days in a two-period crossover design. Participants and research staff were blinded to group assignment. Patients were assigned the lowest available randomisation number from a set of blinded randomisation codes provided by the trial sponsor. Hypoglycaemia was induced by administering three times the usual daily insulin dose at midnight on day 5. Plasma glucose (PG) was stabilised by glucose clamp (5.5 mmol/l) for 7–9 h post dosing. Next morning, PG was allowed to decrease stepwise from 5.5 to 3.5 mmol/l (maintained for 30 min) to 2.5 mmol/l (for 15 min). PG was then increased to 3.9 mmol/l (for 120 min), before being returned to baseline. Hypoglycaemic symptom score (HSS), hypoglycaemic awareness, cognitive function, counter-regulatory hormones and vital signs were assessed during each glucose plateau. The primary analysis was to compare IDeg vs IGlar with respect to HSS at nadir PG concentration (2.5 mmol/l).
Results: The full analysis set for treatment comparisons comprised data from all 28 exposed patients. Rates of PG decline and PG at nadir were similar for IDeg and IGlar. No treatment differences in HSS (estimated difference: 0.17 [95% CI −1.71, 2.05]; p > 0.05), cognitive function or awareness were observed at any time. Growth hormone and cortisol responses during hypoglycaemia were greater with IDeg than IGlar (AUC treatment ratio [IDeg/IGlar]: 2.44 [1.30, 4.60], p < 0.01; and 1.23 [1.01, 1.50]; p < 0.05), and adrenaline (epinephrine) responses trended higher (1.40 [0.96, 2.04], p = 0.07). The rates of recovery from hypoglycaemia were similar.
Conclusions/interpretation: IDeg and IGlar elicit comparable symptomatic and cognitive responses to induced hypoglycaemia. IDeg may elicit a moderately greater endocrine response, but times to PG recovery were similar for the two insulins
Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy.
Giant cell arteritis (GCA) and Takayasu’s arteritis (TAK) are major forms of large-vessel vasculitis (LVV) that share clinical features. To evaluate their genetic similarities, we analysed Immunochip genotyping data from 1,434 LVV patients and 3,814 unaffected controls. Genetic pleiotropy was also estimated. The HLA region harboured the main disease-specific associations. GCA was mostly associated with class II genes (HLA-DRB1/HLA-DQA1) whereas TAK was mostly associated with class I genes (HLA-B/MICA). Both the statistical significance and effect size of the HLA signals were considerably reduced in the cross-disease meta-analysis in comparison with the analysis of GCA and TAK separately. Consequently, no significant genetic correlation between these two diseases was observed when HLA variants were tested. Outside the HLA region, only one polymorphism located nearby the IL12B gene surpassed the study-wide significance threshold in the meta-analysis of the discovery datasets (rs755374, P = 7.54E-07; ORGCA = 1.19, ORTAK = 1.50). This marker was confirmed as novel GCA risk factor using four additional cohorts (PGCA = 5.52E-04, ORGCA = 1.16). Taken together, our results provide evidence of strong genetic differences between GCA and TAK in the HLA. Outside this region, common susceptibility factors were suggested, especially within the IL12B locus
Propensity Score Matching in Randomized Clinical Trials
Cluster randomization trials with relatively few clusters have been widely used in recent years for evaluation of health-care strategies. On average, randomized treatment assignment achieves balance in both known and unknown confounding factors between treatment groups, however, in practice investigators can only introduce a small amount of stratification and cannot balance on all the important variables simultaneously. The limitation arises especially when there are many confounding variables in small studies. Such is the case in the INSTINCT trial designed to investigate the effectiveness of an education program in enhancing the tPA use in stroke patients. In this article, we introduce a new randomization design, the balance match weighted (BMW) design, which applies the optimal matching with constraints technique to a prospective randomized design and aims to minimize the mean squared error (MSE) of the treatment effect estimator. A simulation study shows that, under various confounding scenarios, the BMW design can yield substantial reductions in the MSE for the treatment effect estimator compared to a completely randomized or matched-pair design. The BMW design is also compared with a model-based approach adjusting for the estimated propensity score and Robins-Mark-Newey E-estimation procedure in terms of efficiency and robustness of the treatment effect estimator. These investigations suggest that the BMW design is more robust and usually, although not always, more efficient than either of the approaches. The design is also seen to be robust against heterogeneous error. We illustrate these methods in proposing a design for the INSTINCT trial.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78638/1/j.1541-0420.2009.01364.x.pd
Corrigendum: Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy.
Giant cell arteritis (GCA) and Takayasu's arteritis (TAK) are major forms of large-vessel vasculitis (LVV) that share clinical features. To evaluate their genetic similarities, we analysed Immunochip genotyping data from 1,434 LVV patients and 3,814 unaffected controls. Genetic pleiotropy was also estimated. The HLA region harboured the main disease-specific associations. GCA was mostly associated with class II genes (HLA-DRB1/HLA-DQA1) whereas TAK was mostly associated with class I genes (HLA-B/MICA). Both the statistical significance and effect size of the HLA signals were considerably reduced in the cross-disease meta-analysis in comparison with the analysis of GCA and TAK separately. Consequently, no significant genetic correlation between these two diseases was observed when HLA variants were tested. Outside the HLA region, only one polymorphism located nearby the IL12B gene surpassed the study-wide significance threshold in the meta-analysis of the discovery datasets (rs755374, P\u2009=\u20097.54E-07; ORGCA\u2009=\u20091.19, ORTAK\u2009=\u20091.50). This marker was confirmed as novel GCA risk factor using four additional cohorts (PGCA\u2009=\u20095.52E-04, ORGCA\u2009=\u20091.16). Taken together, our results provide evidence of strong genetic differences between GCA and TAK in the HLA. Outside this region, common susceptibility factors were suggested, especially within the IL12B locus
- …
